Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dễ thấy với điệu kiện đề bài thì xy(\(\sqrt{x}+\sqrt{y}-2.\))\(\ge0\)
Vì x;y có vai trò ngang nhau nên giả sử x\(\ge y\)
đặt \(x^2=a,y^2=b;\sqrt{x}-1=m;\sqrt{y-1}=n\)=> am+bn= \(x^2\left(\sqrt{x}-1\right)+y^2\left(\sqrt{y}-1\right)\)
thì ta có \(a\ge b;m\ge n\)
=> (a-b)(m-n) \(\ge0< =>am+bn\ge an+bm< =>2am+2bn\ge\left(a+b\right)\left(m+m\right)\)
<=>\(am+bn\ge\frac{\left(a+b\right)\left(m+n\right)}{2}=\frac{\left(x^2+y^2\right)\left(\sqrt{x}-1+\sqrt{y}-1\right)}{2}\ge0\)
hay am+bn\(\ge0\)
vậy vế trái luôn lớn hơn bằng 0
dấu"=" khi \(\sqrt{x}+\sqrt{y}-2=0\)
em học lớp 7 nên không biết anh cho em đúng đi rồi em nhờ anh em lớp 12 giải cho