\(\frac{n-23}{n+89}\)là bình phương 1 số hữu tỉ dương

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2021

Đặt: \(\frac{\left(n-23\right)}{n+89}=\frac{a^2}{b^2}\)(với a,b là 2 số nguyên dương và (a,b)=1)).

Gọi d=(n-23,n+89)\(\Rightarrow n+89-\left(n-23\right)=112⋮d\). Do đó d chỉ có thể có các ước nguyên tố là 2 và 7.

Nếu d chia hết cho 7 thì: Đặt n=7k+2 ( với k là số nguyên dương). Suy ra: \(\frac{\left(n-23\right)}{n+89}=\frac{7k-21}{7k+91}=\frac{k-3}{k+13}\).

Đến đây xét vài trường hợp nữa bài này có dạng tìm k biết \(k+a,k+b\) đều là số chính phương.

30 tháng 8 2019

Đặt \(a-b=x;b-c=y;c-a=z\)

\(\Rightarrow x+y+z=a-b+b-c+c-a=0\)

Lúc đó: \(B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Mà \(x+y+z=0\Rightarrow2\left(x+y+z\right)=0\Rightarrow\frac{2\left(x+y+z\right)}{xyz}=0\)

\(\Rightarrow B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{yz}+\frac{2}{xz}+\frac{2}{xy}\)

\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

NV
13 tháng 6 2019

\(\frac{n-17}{n-23}=k^2\Leftrightarrow n-17=k^2n-23k^2\)

\(\Leftrightarrow n\left(k^2-1\right)=23k^2-17\Leftrightarrow n=\frac{23k^2-17}{k^2-1}=23+\frac{6}{k^2-1}\)

\(\Rightarrow k^2-1=Ư\left(6\right)=\left\{-1;1;2;3;6\right\}\)

\(k^2-1=-1\Rightarrow k^2=0\Rightarrow n=17\)

\(k^2-1=1\Rightarrow k^2=2\) (ko tồn tại k hữu tỉ)

\(k^2-1=3\Rightarrow k^2=4\Rightarrow n=25\)

\(k^2-1=2\Rightarrow k^2=3\left(ktm\right)\)

\(k^2-1=6\Rightarrow k^2=7\left(ktm\right)\)

Vậy \(n=\left\{17;25\right\}\)

Bạn nên thêm các điều kiện mẫu khác 0 vào cho chặt chẽ hơn

17 tháng 6 2019

Gọi giá trị của phân số\(\frac{n-17}{n+23}=a^2\)(a là số hữu tỉ)

Ta có:

\(\frac{n-17}{n+23}=a^2\Leftrightarrow n-17=a^2n+23a^2\)

\(\Leftrightarrow n\left(1-a^2\right)=23a^2+17\)

\(\Leftrightarrow n=\frac{23a^2+17}{1-a^2}==-23+\frac{40}{1-a^2}\)

Bạn lm nốt nha

18 tháng 6 2019

cám ơn bạn nhiều

28 tháng 11 2019

Đặt: \(a+\frac{1}{a}=x\inℕ^∗\)

\(b+\frac{1}{b}=y\inℕ^∗\)

\(c+\frac{1}{c}=z\inℕ^∗\)

Em xem lại đề bài nhé! Nếu đề thế này thì rất là không có ý nghĩa.

28 tháng 11 2019

Dạ là tìm 3 số hữu tỉ dương a,b,c ạ e xin lỗi e quên mất ạ

19 tháng 9 2016

Ta xét : \(\left(n-1\right).n.\left(n+1\right)\left(n+2\right)+1=\left[\left(n-1\right)\left(n+2\right)\right].\left[n\left(n+1\right)\right]+1\)

\(=\left(n^2+n+2\right)\left(n^2+n\right)+1=\left(n^2+n\right)^2+2\left(n^2+n\right)+1=\left(n^2+n+1\right)^2\)

Suy ra \(A=12\sqrt{\left(n^2+n+1\right)^2}+23=12\left(n^2+n+1\right)+23=\left(2n+1\right)^2+\left(2n-3\right)^2+\left(2n+5\right)^2\)