Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài đúng khi ta gộp hai giả thiết lại với nhau (chứ không phải tách ra như trên)
Đặt \(f\left(x\right)=x^3+ax+b\) thì ta có : \(\begin{cases}f\left(x\right)=\left(x+1\right).Q\left(x\right)+7\\f\left(x\right)=\left(x+3\right).Q'\left(x\right)+5\end{cases}\) với Q(x) và Q'(x) là các đa thức thương.
Khi đó ta có : \(\begin{cases}f\left(-1\right)=7\\f\left(-3\right)=5\end{cases}\)
Ta có hệ : \(\begin{cases}-1-a+b=7\\-27-3a+b=5\end{cases}\) \(\Leftrightarrow\begin{cases}a=-12\\b=-4\end{cases}\)
Vậy .....................................................
Gọi thương của phép chia \(x^3+ax+b\) cho \(x+1\)là \(A\left(x\right)\); cho \(x-2\)là \(B\left(x\right)\)
Ta có: \(f\left(x\right)=x^3+ax+b=\left(x+1\right).A\left(x\right)+7\)
\(f\left(x\right)=x^3+ax+b=\left(x-2\right).B\left(x\right)+4\)
Theo định lý Bơ-du ta có:
\(f\left(-1\right)=-1-a+b=7\)
\(f\left(2\right)=8+2a+b=4\)
suy ra: \(a=-4;\) \(b=4\)
Vậy...
c)
Gọi đa thức \(ax^3+bx^2+c\) là \(f\left(x\right)\).
Theo bài ra \(f\left(x\right)⋮x+2\) , ta có phương trình:
\(f\left(-2\right)=-8a+4b+c=0\)(1)
Gọi \(Q\left(x\right)\) là thương của đa thức \(f\left(x\right)\) khi chia \(x^2-1\) được dư là \(x+5\). Ta có:
\(f\left(x\right)=ax^3+bx^2+cx=\left(x^2-1\right).Q\left(x\right)+x+5\)(*)
Nghiệm của \(x^2-1\) là \(1\) và \(-1\). Thay nghiệm x=1 và x=-1 vào (*), ta có :
\(\left\{{}\begin{matrix}a.\left(-1\right)^3+b\left(-1\right)^2+c=0.Q\left(x\right)+\left(-1\right)+5=4\\a.1^3+b.1^2+c=0.Q\left(x\right)+1+5=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-a+b+c=4\left(2\right)\\a+b+c=6\left(3\right)\end{matrix}\right.\)
Từ (1), (2) và (3), ta có HPT:
\(\left\{{}\begin{matrix}-8a+4b+c=0\\-a+b+c=4\\a+b+c=6\end{matrix}\right.\)
Giải HPT ta được:
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=4\end{matrix}\right.\)
Vậy a=1;b=1 và c=4
b)
Gọi đa thức \(x^3+ax+b\) là \(f\left(x\right)\)
Gọi \(P\left(x\right)\) là thương khi chia đa thức \(f\left(x\right)\) cho \(x+1\) được dư 7.
Gọi \(Q\left(x\right)\) là thương khi chia đa thức \(f\left(x\right)\) cho \(x-3\) dư -5.
Theo bài ra ta có PT:
\(\left\{{}\begin{matrix}x^3+ax+b=\left(x+1\right).P\left(x\right)+7\\x^3+ax+b=\left(x-3\right).Q\left(x\right)+\left(-5\right)\end{matrix}\right.\)(*)
Nghiệm của x+1 là -1 và nghiệm của x-3 là 3. Thay nghiệm x=-1 và x=3 vào (*) ta được:
\(\left\{{}\begin{matrix}\left(-1\right)^3+a\left(-1\right)+b=0.P\left(x\right)+7=7\\3^3+a3+b=0.Q\left(x\right)-5=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1-a+b=-7\\27+3a+b=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=8\\3a+b=-32\end{matrix}\right.\)
Giải HPT ta được:
\(\Leftrightarrow\left\{{}\begin{matrix}a=-10\\b=-2\end{matrix}\right.\)
Vậy a=-10, b=-2
a) Đặt \(A\left(x\right)=x^4-9x^3+ax^2+x+b\)
Vì \(A\left(x\right)\) chia hết cho \(x^2-x-2\) nên :
\(A\left(x\right)=\left(x^2-x-2\right).Q\left(x\right)\)
\(\Leftrightarrow A\left(x\right)=\left(x-2\right)\left(x+1\right)Q\left(x\right)\) (*)
Lần lượt thay \(x=2,x=-1\) vào (*) ta có :
\(\hept{\begin{cases}2^4-9.2^3+a.2^2+2+b=0\\\left(-1\right)^4-9.\left(-1\right)^3+\left(-1\right)^2.a+\left(-1\right)+b=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4a+b=54\\a+b=-9\end{cases}\Leftrightarrow}\hept{\begin{cases}a=21\\b=-30\end{cases}}\)
b) Đặt \(B\left(x\right)=x^3+ax+b\)
Vì \(B\left(x\right):\left(x+1\right)\) dư 7 nên : \(B\left(x\right)=\left(x+1\right).H\left(x\right)+7\)
Thay \(x=-1\) vào thì ta có : \(\left(-1\right)^3+a.\left(-1\right)+b=7\Leftrightarrow b-a=8\) (1)
Vì \(B\left(x\right):\left(x-3\right)\) dư -5 nên : \(B\left(x\right)=\left(x-3\right).G\left(x\right)-5\)
Thay \(x=3\) vào thì ta có : \(3^3+3a+b=-5\Leftrightarrow3a+b=-32\) (2)
Từ (1) và (2) suy ra \(\hept{\begin{cases}a=-10\\b=-2\end{cases}}\)
c) Đặt \(C\left(x\right)=ax^3+bx^2+c\)
Vì \(C\left(x\right)⋮x+2\Rightarrow C\left(x\right)=\left(x+2\right).Y\left(x\right)\)
Với \(x=-2\) thì \(\left(-2\right)^3.a+\left(-2\right)^2.b+c=0\)
\(\Leftrightarrow-8a+4b+c=0\) (3)
Lại có : \(C\left(x\right):\left(x^2-1\right)\) thì dư \(x+5\) nên :
\(C\left(x\right)=\left(x^2-1\right).K\left(x\right)+\left(x+5\right)=\left(x-1\right)\left(x+1\right).K\left(x\right)+x+5\)
Với \(x=1\) thì ta có : \(a+b+c=1+5=6\) (4)
Với \(x=-1\) thì ta có : \(-a+b+c=-1+5=4\) (5)
Từ (3) ; (4) và (5) suy ra : \(\hept{\begin{cases}-8a+4b+c=0\\a+b+c=6\\-a+b+c=4\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}}}\)
+ \(x^3+ax+b=\left(x+1\right)\cdot P\left(x\right)+7\)
( trong đó P(x) là thương khi chia \(x^3+ax+b\) cho 7 )
Do đó với x = -1 thì -1 - a + b = 7
=> b - a = 8 (1)
\(x^3+ax+b=\left(x-3\right)\cdot Q\left(x\right)-5\)
( Q(x) là thương khi chia \(x^3+ax+b\) cho x - 3 )
Do đó với x = 3 thì : 27 + 3a + b = -5
=> 3a + b = -32 (2)
+ Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}a=-10\\b=-2\end{matrix}\right.\)
Cái này cũng là định lý Bê - du luôn đó bn
+ Số dư khi chia đa thức f(x) cho nhị thức x - a bằng giá trị của đa thức f(x) tại x = a
Như vậy áp dụng vào bài toán trên thì :
\(f\left(x\right)=x^3+ax+b\) chia x - (- 1) dư 7
=> f(-1) = 7
Ta có:
\(x^3+ax+b=\left(x+1\right)\cdot P\left(x\right)+7\)
\(x^3+ax+b=\left(x-3\right)\cdot Q\left(x\right)+5\)
Theo Bezut ta có:
Với \(x=-1\Rightarrow b-a-1=7\)
Với \(x=3\Rightarrow3a+b+27=5\)
\(\Rightarrow4a+28=-2\Rightarrow4a=26\Rightarrow a=\frac{13}{2}\Rightarrow b=\frac{29}{2}\)