K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2019

Ta có:

\(x^3+ax+b=\left(x+1\right)\cdot P\left(x\right)+7\)

\(x^3+ax+b=\left(x-3\right)\cdot Q\left(x\right)+5\)

Theo Bezut ta có:

Với \(x=-1\Rightarrow b-a-1=7\)

Với \(x=3\Rightarrow3a+b+27=5\)

\(\Rightarrow4a+28=-2\Rightarrow4a=26\Rightarrow a=\frac{13}{2}\Rightarrow b=\frac{29}{2}\)

22 tháng 10 2018

undefinedundefinedMời các god xơi câu c

8 tháng 8 2019

a,gọi f(x)=x3+ax+b

theo đb có: f(x)=(x+1)t(x)+7

=> f(-1)=7=> -1-a+b=7<=>b-a=8(1)

f(x)=(x-3)h(x)-3=> f(3)=-3=> 27+3a+b=3<=> 3a+b=-24(2)

từ (1);(2)=> a=-8;b=0

30 tháng 10 2016

Đề bài đúng khi ta gộp hai giả thiết lại với nhau (chứ không phải tách ra như trên)

Đặt \(f\left(x\right)=x^3+ax+b\) thì ta có : \(\begin{cases}f\left(x\right)=\left(x+1\right).Q\left(x\right)+7\\f\left(x\right)=\left(x+3\right).Q'\left(x\right)+5\end{cases}\) với Q(x) và Q'(x) là các đa thức thương.

Khi đó ta có : \(\begin{cases}f\left(-1\right)=7\\f\left(-3\right)=5\end{cases}\)

Ta có hệ : \(\begin{cases}-1-a+b=7\\-27-3a+b=5\end{cases}\) \(\Leftrightarrow\begin{cases}a=-12\\b=-4\end{cases}\)

Vậy .....................................................

30 tháng 10 2016

@Nguyễn Anh Duy giúp mình với

11 tháng 2 2018

Gọi thương của phép chia  \(x^3+ax+b\)   cho  \(x+1\)là   \(A\left(x\right)\);   cho  \(x-2\)là     \(B\left(x\right)\)

Ta có:    \(f\left(x\right)=x^3+ax+b=\left(x+1\right).A\left(x\right)+7\)

             \(f\left(x\right)=x^3+ax+b=\left(x-2\right).B\left(x\right)+4\)

Theo định lý  Bơ-du ta có:

          \(f\left(-1\right)=-1-a+b=7\)

        \(f\left(2\right)=8+2a+b=4\)

suy ra:   \(a=-4;\)   \(b=4\)

Vậy...

5 tháng 8 2018

c)

Gọi đa thức \(ax^3+bx^2+c\)\(f\left(x\right)\).

Theo bài ra \(f\left(x\right)⋮x+2\) , ta có phương trình:

\(f\left(-2\right)=-8a+4b+c=0\)(1)

Gọi \(Q\left(x\right)\) là thương của đa thức \(f\left(x\right)\) khi chia \(x^2-1\) được dư là \(x+5\). Ta có:

\(f\left(x\right)=ax^3+bx^2+cx=\left(x^2-1\right).Q\left(x\right)+x+5\)(*)

Nghiệm của \(x^2-1\)\(1\)\(-1\). Thay nghiệm x=1 và x=-1 vào (*), ta có :

\(\left\{{}\begin{matrix}a.\left(-1\right)^3+b\left(-1\right)^2+c=0.Q\left(x\right)+\left(-1\right)+5=4\\a.1^3+b.1^2+c=0.Q\left(x\right)+1+5=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a+b+c=4\left(2\right)\\a+b+c=6\left(3\right)\end{matrix}\right.\)

Từ (1), (2) và (3), ta có HPT:

\(\left\{{}\begin{matrix}-8a+4b+c=0\\-a+b+c=4\\a+b+c=6\end{matrix}\right.\)

Giải HPT ta được:

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=4\end{matrix}\right.\)

Vậy a=1;b=1 và c=4

5 tháng 8 2018

b)

Gọi đa thức \(x^3+ax+b\)\(f\left(x\right)\)

Gọi \(P\left(x\right)\) là thương khi chia đa thức \(f\left(x\right)\) cho \(x+1\) được dư 7.

Gọi \(Q\left(x\right)\) là thương khi chia đa thức \(f\left(x\right)\) cho \(x-3\) dư -5.

Theo bài ra ta có PT:

\(\left\{{}\begin{matrix}x^3+ax+b=\left(x+1\right).P\left(x\right)+7\\x^3+ax+b=\left(x-3\right).Q\left(x\right)+\left(-5\right)\end{matrix}\right.\)(*)

Nghiệm của x+1 là -1 và nghiệm của x-3 là 3. Thay nghiệm x=-1 và x=3 vào (*) ta được:

\(\left\{{}\begin{matrix}\left(-1\right)^3+a\left(-1\right)+b=0.P\left(x\right)+7=7\\3^3+a3+b=0.Q\left(x\right)-5=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1-a+b=-7\\27+3a+b=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=8\\3a+b=-32\end{matrix}\right.\)

Giải HPT ta được:

\(\Leftrightarrow\left\{{}\begin{matrix}a=-10\\b=-2\end{matrix}\right.\)

Vậy a=-10, b=-2

17 tháng 8 2020

a) Đặt \(A\left(x\right)=x^4-9x^3+ax^2+x+b\)

Vì \(A\left(x\right)\) chia hết cho \(x^2-x-2\) nên :

\(A\left(x\right)=\left(x^2-x-2\right).Q\left(x\right)\)

\(\Leftrightarrow A\left(x\right)=\left(x-2\right)\left(x+1\right)Q\left(x\right)\) (*)

Lần lượt thay \(x=2,x=-1\) vào (*) ta có :

\(\hept{\begin{cases}2^4-9.2^3+a.2^2+2+b=0\\\left(-1\right)^4-9.\left(-1\right)^3+\left(-1\right)^2.a+\left(-1\right)+b=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4a+b=54\\a+b=-9\end{cases}\Leftrightarrow}\hept{\begin{cases}a=21\\b=-30\end{cases}}\)

b) Đặt \(B\left(x\right)=x^3+ax+b\)

Vì \(B\left(x\right):\left(x+1\right)\) dư 7 nên : \(B\left(x\right)=\left(x+1\right).H\left(x\right)+7\)

Thay \(x=-1\) vào thì ta có : \(\left(-1\right)^3+a.\left(-1\right)+b=7\Leftrightarrow b-a=8\) (1)

Vì \(B\left(x\right):\left(x-3\right)\) dư -5 nên : \(B\left(x\right)=\left(x-3\right).G\left(x\right)-5\)

Thay \(x=3\) vào thì ta có : \(3^3+3a+b=-5\Leftrightarrow3a+b=-32\) (2)

Từ (1) và (2) suy ra \(\hept{\begin{cases}a=-10\\b=-2\end{cases}}\)

c) Đặt \(C\left(x\right)=ax^3+bx^2+c\)

Vì \(C\left(x\right)⋮x+2\Rightarrow C\left(x\right)=\left(x+2\right).Y\left(x\right)\)

Với \(x=-2\) thì \(\left(-2\right)^3.a+\left(-2\right)^2.b+c=0\)

\(\Leftrightarrow-8a+4b+c=0\) (3)

Lại có : \(C\left(x\right):\left(x^2-1\right)\) thì dư \(x+5\) nên :

\(C\left(x\right)=\left(x^2-1\right).K\left(x\right)+\left(x+5\right)=\left(x-1\right)\left(x+1\right).K\left(x\right)+x+5\)

Với \(x=1\) thì ta có : \(a+b+c=1+5=6\) (4)

Với \(x=-1\) thì ta có : \(-a+b+c=-1+5=4\) (5)

Từ (3) ; (4) và (5) suy ra : \(\hept{\begin{cases}-8a+4b+c=0\\a+b+c=6\\-a+b+c=4\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}}}\)

6 tháng 11 2018

+ \(x^3+ax+b=\left(x+1\right)\cdot P\left(x\right)+7\)

( trong đó P(x) là thương khi chia \(x^3+ax+b\) cho 7 )

Do đó với x = -1 thì -1 - a + b = 7

=> b - a = 8 (1)

\(x^3+ax+b=\left(x-3\right)\cdot Q\left(x\right)-5\)

( Q(x) là thương khi chia \(x^3+ax+b\) cho x - 3 )

Do đó với x = 3 thì : 27 + 3a + b = -5

=> 3a + b = -32 (2)

+ Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}a=-10\\b=-2\end{matrix}\right.\)

Cái này cũng là định lý Bê - du luôn đó bn

+ Số dư khi chia đa thức f(x) cho nhị thức x - a bằng giá trị của đa thức f(x) tại x = a

Như vậy áp dụng vào bài toán trên thì :

\(f\left(x\right)=x^3+ax+b\) chia x - (- 1) dư 7

=> f(-1) = 7