Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://freefire.ff.garena.vn?code=a9c37560-de15-11ea-a3f0-552a419ccfac
Copy link lên gg rồi đăng nhập fb là sẽ đc k
Tìm số dư khi chia A= \(a^{2n}+a^n+1\) cho \(a^2+a+1\) với mọi số tự nhiên n và a thuộc Z, a khác 1.
TH1: n = 3k , k là số tự nhiên.
Có: \(A=a^{6k}+a^{3k}+1=\left(a^{6k}-1\right)+\left(a^{3k}-1\right)+3\)
\(=\left(a^{3k}-1\right)\left(a^{3k}+1\right)+\left(a^{3k}-1\right)+3=\left(a^{3k}-1\right)\left(a^{3k}+2\right)+3\)
lại có: \(a^{3k}-1=\left(a^3\right)^k-1⋮a^3-1\) và \(a^3-1⋮a^2+a+1\)
=> \(a^{3k}-1⋮a^2+a+1\)
=> \(\left(a^{3k}-1\right)\left(a^{3k}+2\right)⋮a^2+a+1\)
=> \(A:a^2+a+1\) dư 3, với mọi a khác -2; -1; 0; 1.
TH2: n = 3k + 1, k là số tự nhiên.
Có: \(A=a^{6k+2}+a^{3k+1}+1=a^2\left(a^{6k}-1\right)+a\left(a^{3k}-1\right)+\left(a^2+a+1\right)\)
\(=a^2\left(a^{3k}-1\right)\left(a^{3k}+1\right)+a\left(a^{3k}-1\right)+\left(a^2+a+1\right)\)
\(=\left(a^{3k}-1\right)\left[a^2\left(a^{3k}+1\right)+a\right]+\left(a^2+a+1\right)⋮a^2+a+1\)
Vì \(a^{3k}-1⋮a^2+a+1;a^2+a+1⋮a^2+a+1\)
=> \(A⋮a^2+a+1\)
hay \(A:a^2+a+1\) dư 0
TH3: n = 3k +2, k là số tự nhiên
Có: \(A=a^{6k+4}+a^{3k+2}+1=a^4\left(a^{6k}-1\right)+a^2\left(a^{3k}-1\right)+\left(a^4+a^2+1\right)\)
\(=a^4\left(a^{3k}+1\right)\left(a^{3k}-1\right)+a^2\left(a^{3k}-1\right)+\left(a^4+2a^2+1\right)-a^2\)
\(=\left(a^{3k}-1\right)\left[a^4\left(a^{3k}+1\right)+a^2\right]+\left(a^2-a+1\right)\left(a^2+a+1\right)⋮a^2+a+1\)
=> \(A:a^2+a+1\) dư 0.
Kêt luận: Với n là số tự nhiên chia hết cho 3, a là số nguyên khác -2; -1 ; 0; 1 thì A chia cho a^2 +a +1 dư 3
n là số tự nhiên không chia hết cho 3, a là số nguyên bất kì thì A chia cho a^2 +a +a dư 0.
.
Tìm số dư khi chia A= \(a^{2n}+a^n+1\) cho \(a^2+a+1\) với mọi số tự nhiên n và a thuộc Z, \(a\ne1\)
Xét \(A=a^{2024}-a^{2020}=a^{2020}\left(a^4-1\right)\)
- Chứng minh A chia hết cho 2:
+) Nếu a lẻ thì \(a-1\)chẵn nên A chia hết cho 2
+) Nếu a chẵn thì \(a^{2020}\)chẵn nên A chia hết cho 2
- Chứng minh A chia hết cho 3:
+) Nếu a chia hết cho 3 thì \(a^{2020}\)chia hết cho 3 nên A chia hết cho 3
+) Nếu a không chia hết cho 3 thì \(a^2\equiv1\)(mod 3) \(\Rightarrow a^4\equiv1\)(mod 3). Vậy \(a^4-1\)chia hết cho 3 nên A chia hết cho 3
- Chứng minh A chia hết cho 5:
+) Nếu a chia hết cho 5 thì \(a^{2020}\)chia hết cho 5 nên a chia hết cho 5
+) Nếu a không chia hết cho 5 thì \(a^2\equiv1,4\)(mod 5) \(\Rightarrow a^4\equiv1\)(mod 5). Vậy \(a^4-1\)chia hết cho 5 nên A chia hết cho 5
Từ đây ta có A chia hết cho 2, 3, 5 vậy A chia hết cho 30 \(\Rightarrow a^{2024}\equiv a^{2020}\)(mod 30)
\(\Rightarrow a^{2020}+b^{2020}+c^{2020}\equiv a^{2024}+b^{2024}+c^{2024}\equiv7\)(mod 30)
Vậy \(a^{2024}+b^{2024}+c^{2024}\)chia 30 dư 7
Đặt K = 23 + 24 + 25 + ... + 2100
K = 4 + (23 + 24 + 25) + ......... + (297 + 298 + 299 + 2100)
<=> K = 4 + (8 + 16 + 32) + ... + (1.5845633e+29) +( 3.1691265e+29 ) + (6.338253e+29) + (1.2676506e+30)
<=>K = 4 + 56 + ... + (1.5845633e+29) +( 3.1691265e+29 ) + (6.338253e+29) + (1.2676506e+30)
<=>K = 60 + ... + (1.5845633e+29) +( 3.1691265e+29 ) + (6.338253e+29) + (1.2676506e+30)
<=> K = 60 + ... + 2.3768449e+30
<=> K = 2.3768449e+30 + ... + 60 + r
=> r = 1.1789905e+27
=> r = 1
Đ/s:
Ps: Không chắc đâu nhé! Nhưng dù sao giúp bạn là mình vui rồi!
C= 2535301200456458802993406410744
1116 là kết quả của mk
đúng ko sai
xxxxx - yyyy = 16 dư r
=> xxxxx = 16yyy + r
xxxx - yyy = 16 dư r - 2000
=> xxxx = 16yyy + r - 2000
Ta có: xxxxx = 10000x + xxxx = 16yyy + r - 2000 + 10000x = 16yyyy + r
Do vậy: 16yyy + r - 2000 + 10000x = 16yyyy + r
16yyy + r - 2000 + 10000x - 16yyyy - r = 0
10000x + 16000y - 2000 + (16yyy - 16yyy) = 0
=> 5x - 8y - 1 = 0
5x - 8y = 1
P/s: Sao giống toán lớp giữ v?
+) \(2^{2n}=4^n=4\left(4^{n-1}-1\right)+4\)với \(n\inℕ^∗\)
+) \(4^{n-1}-1\equiv1-1\equiv0\)(mod 3)
\(\Rightarrow4\left(4^{n-1}-1\right)⋮12\)
Vậy \(2^{2n}\)chia 12 dư 4