K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2016

Vì a,b,c,d là các chữ số
=> d<10
=> 0<a<3
mà 4 là số chẵn
=> dcba là số chẵn
=> a chẵn
=> a = 2
ta có 4. 2bcd = dcb2
=> d có thể nhận các giá trị 8 hoặc 9
mà một số có tận cùng là 8 nhân với 4 sẽ được số tận cùng là 2
=> d = 8
ta có 4. 2bc8 = 8cb2
<=> 4. (2000 + 100b + 10c + 8) = 8000 + 100c + 10b + 2
<=> 8000 + 400b + 40c + 32 = 8000 + 100c + 10b + 2
<=> 60c - 390b = 30
<=> 2c - 13b = 1
<=> 13b + 1 = 2c
mà 2c < 20
=> 13b < 19
=> b < 2
2c là số chẵn => b lẻ
=> b = 1
=> c = 7
thử lại thấy thỏa mãn
vậy số cần tìm là 2178

24 tháng 11 2016

a,b,c,d là các chữ số 
=> d<10 
=> 0<a<3 
mà 4 là số chẵn 
=> dcba là số chẵn 
=> a chẵn 
=> a = 2 
ta có 4. 2bcd = dcb2 
=> d có thể nhận các giá trị 8 hoặc 9 
mà một số có tận cùng là 8 nhân với 4 sẽ được số tận cùng là 2 
=> d = 8 
ta có 4. 2bc8 = 8cb2 
<=> 4. (2000 + 100b + 10c + 8) = 8000 + 100c + 10b + 2 
<=> 8000 + 400b + 40c + 32 = 8000 + 100c + 10b + 2 
<=> 60c - 390b = 30 
<=> 2c - 13b = 1 
<=> 13b + 1 = 2c 
mà 2c < 20 
=> 13b < 19 
=> b < 2 
2c là số chẵn => b lẻ 
=> b = 1 
=> c = 7 
thử lại thấy thỏa mãn 
vậy số cần tìm là 2178

Tìm abcd nếu

4.abcd = dcba

2
8 tháng 7 2019

\(\overline{abcd};\overline{dcba}\)là số tự nhiên có bốn chữ số

=> \(a,d\ne0\)

Và vì: \(4.\overline{abcd}=\overline{dcba}\)

=> a<3

TH1: a=1

Khi đó ta có: \(4.\overline{1bcd}=\overline{dcb1}\)

Loại vì không tồn tại số nhân với 4 được số tự nhiên tận cùng là 1

TH2: a=2

Khi đó ta có: \(4.\overline{2bcd}=\overline{dcb2}\)

=> d=3 hoặc d=8

+) Với d =3 ta có:

\(4.\overline{2bc3}=\overline{3cb2}\)loại ( vì 4.2=8>3)

+) Với d=8

ta có: \(4.\overline{2bc8}=\overline{8cb2}\)

<=> \(4.\left(2000+b.100+c.10+8\right)=8000+c.100+b.10+2\)

<=> \(390b-60c+30=0\)

<=> \(13b-2c+1=0\)

<=> \(c=\frac{13b+1}{2}\)

=> b=1 và c=7

Vậy số tự nhiên cần tìm là: 2178 và 4x2178=8712

Cô ơi e có cách giải mới mong cô xem qua 

Số cần tìm có dạng \(\overline{abcd}\)

Ta có 4.\(\overline{abcd}=\overline{dcba}\Rightarrow\overline{dcba}⋮4\Rightarrow a\in\left\{0;1;4;6;8\right\}\)

Xét các trường hợp thấy \(a\in0\)và nếu \(a\ge4\)thì \(4.\overline{abcd}\ge4.4000>9999\ge\overline{dcba}\)

và a=2 =>\(\overline{abcd}=\overline{dcba}\ge4.2000=8000=>d\in\left\{8;9\right\}\)

Mà \(\overline{dcba}=4\overline{abcd}\Rightarrow4.d\)phải tận cùng bằng chữ số a.

Mặt khác :4.8=32;4.9=36=>d=8

Ta có \(\overline{dcba}=100.dc+ba=2.5.4.dc+ba⋮4\)

=>ba\(⋮\)4

Vì a\(⋮\)2 theo trên =>b\(\in\){1;3;5;7;9}

Xét các trường hợp của b

Nếu \(b\ge3\Rightarrow\overline{8cba}\ge4.2300=9200\)(vô lí )

Nếu b : 1=>\(\overline{8bc12}=4.\overline{2108}\)

=>8012+100c=4.2108+4.10.c

=>60c=420

=>c=420:60

=>c=7

Vậy \(\overline{abcd}=2178\)

7 tháng 10 2015

ta có vì abcd và dcba là số có 4 chữ số 
nên ta có : a.10^3 x 9 = d.10^3 => a =1 => d =9 
**Xét abcd : vì a =1 => b x 9 < số có 2 chữ số => b=1 hoặc b=0 
với b =1 thì 11c9 x 9 = 9c11 
vì b=1 =>11c9 x 9 có c x 9 là số bé hơn 2 chữ số => c =1 hoặc c =0 => vô lý 
với b = 0 thì 10c9 x 9 = 9c01 =>c = 8 
=> 1089 x 9 = 9801

24 tháng 4 2019

\(f\left(x\right)\)có hai nghiệm là x=-1 và x=1

ta có: \(f\left(1\right)=0\Leftrightarrow1^3+a+b-2=0\Leftrightarrow a+b=1\)(1)

\(f\left(-1\right)=\left(-1\right)^3+a\left(-1\right)^2+b\left(-1\right)-2=0\Leftrightarrow a-b=3\)(2)

Từ (1) VÀ (2) TA CÓ: \(a=\frac{1+3}{2}=2;b=\frac{1-3}{2}=-1\)

b)Đề bài tìm số chính phương có bốn chữ số khác nhau ?

Đặt : \(\overline{abcd}=n^2;\overline{dcba}=m^2\)(g/s m, n là các số tự nhiên)

Theo bài ta có các giả thiết sau:  

\(1000\le m^2,n^2\le9999\Rightarrow32\le m;n\le99\)(1)

\(m^2⋮n^2\Rightarrow m⋮n\)(2)

=> Đặt m=kn (k là số tự nhiên, K>1)

Ta có: \(\hept{\begin{cases}32\le n\le99\\32\le m\le99\end{cases}\Rightarrow}\hept{\begin{cases}32.k\le kn\le99k\\32\le kn\le99\end{cases}\Rightarrow}32k\le kn\le99\Rightarrow k\le\frac{99}{32}\Rightarrow k\le3\)

Vậy nên k=2 hoặc bằng 3

Vì \(m=kn\Rightarrow m^2=k^2.n^2\Rightarrow\overline{dcba}=k^2.\overline{abcd}\)

+) Với k=2

Ta có: \(\overline{dcba}=4.\overline{abcd}\)

Vì  \(\overline{abcd};\overline{dcba}\)là các số chính phương có 4 chữ số khác nhau \(\Rightarrow d,a\in\left\{1;4;6;9;\right\}\)

và \(\overline{dcba}⋮\overline{abcd}\)nên d>a(2)

@) Khi \(a\ge4\Rightarrow\overline{dcba}\ge4.\overline{4bcd}>9999\)(loại)

Nên a=1.

Ta có: \(\overline{dcb1}=4.\overline{1bcd}\)vô lí vì không có số \(d\in\left\{1;4;6;9;\right\}\)nhân với 4 bằng 1

+) Với K=3

tương tự lập luận trên ta có a=1

Ta có: \(\overline{dcb1}=9.\overline{1bcd}\)=> d=9

Ta có: \(\overline{9cb1}=9.\overline{1bc9}\Leftrightarrow9000+c.100+b.10+1=9\left(1000+b.100+c.10+9\right)\)

\(\Leftrightarrow10c=890b+80\Leftrightarrow c=89b+8\)vì c, b là các số tự nhiên từ 0, đến 9

=> b=0; c=8

=> Số cần tìm 1089 và 9801 thỏa mãn với các điều kiện bài toán