K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2017

lời giải

\(\Delta_1\) //\(\Delta_2\)

Vậy \(\Delta_3\) cách đều phải //\(\Delta_2\)\(\Delta_1\) và giữa \(\Delta_1\&\Delta_2\)

M(0,b)

x=0 =>\(\left\{{}\begin{matrix}\Delta_1=y=1\\\Delta_2\Rightarrow y=-\dfrac{7}{3}\end{matrix}\right.\)

=> b=\(\dfrac{\dfrac{3}{3}-\dfrac{7}{3}}{2}=\dfrac{-2}{3}\)

\(M=\left(0,-\dfrac{2}{3}\right)\)

\(\Delta_3\) phải đi qua M

=>\(\Delta_3\)=5x+3(y+2/3)=5x+3y+2=0

Đáp số: \(\Delta_3\)=5x+3y+2=0

30 tháng 3 2017

Giải bài 3 trang 93 SGK hình học 10 | Giải toán lớp 10

30 tháng 3 2017

Giải bài 3 trang 93 SGK hình học 10 | Giải toán lớp 10

NV
30 tháng 5 2020

Gọi \(M\left(x;y\right)\) là điểm thuộc phân giác của 2 đường thẳng

\(\Leftrightarrow d\left(M;\Delta_1\right)=d\left(M;\Delta_2\right)\)

a/ \(\frac{\left|2x+4y+7\right|}{\sqrt{2^2+4^2}}=\frac{\left|5x+3y+7\right|}{\sqrt{5^2+3^2}}\)

\(\Leftrightarrow\sqrt{17}\left|2x+4y+7\right|=\sqrt{10}\left|5x+3y+7\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{17}x+4\sqrt{17}y+7\sqrt{17}=5\sqrt{10}x+3\sqrt{10}y+7\sqrt{10}\\2\sqrt{17}x+4\sqrt{17}y+7\sqrt{17}=-5\sqrt{10}x-3\sqrt{10}y-7\sqrt{10}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(2\sqrt{17}-5\sqrt{10}\right)x+\left(4\sqrt{17}-3\sqrt{10}\right)y+7\sqrt{17}-7\sqrt{10}=0\\\left(2\sqrt{17}+5\sqrt{10}\right)x+\left(4\sqrt{17}+3\sqrt{10}\right)y+7\sqrt{17}+7\sqrt{10}=0\end{matrix}\right.\)

Câu b bạn làm tương tự. Số xấu quá nhìn chẳng muốn làm luôn

31 tháng 5 2020

hình như bạn nhầm \(\sqrt{5^2+3^2}=\sqrt{34}\) chứ sai lại là \(\sqrt{17}\)

1 tháng 4 2016

Đường thẳng \(\Delta_1\) có vec tơ pháp tuyến \(\overrightarrow{n_1}=\left(3;4\right)\)

Đường thẳng \(\Delta_2\) có vec tơ pháp tuyến \(\overrightarrow{n_2}=\left(4;-3\right)\)

Do \(\overrightarrow{n_1}.\overrightarrow{n_2}=3.4+4.\left(-3\right)=0\) nên \(\Delta_1\perp\Delta_2\)

Do đó nếu đường thẳng d tạo với  \(\Delta_1,\Delta_2\) một tam giác cân, thì đó là tam giác vuông cân, tại đỉnh là giao điểm của  \(\Delta_1;\Delta_2\)

Bài toán quy về viết phương trình đường thẳng d đi qua điểm M(1;1) và tạo với đường thẳng  \(\Delta_1\) một góc \(\frac{\pi}{4}\).

Giả sử đường thẳng d có vec tơ pháp tuyến \(\overrightarrow{m}=\left(a;b\right)\) với \(a^2+b^2\ne0\), khi đó d có phương trình dạng :

\(ax+by-a-b=0\)

Do  góc \(\left(d;\Delta_1\right)=\frac{\pi}{4}\) nên

\(\frac{\left|3a+4b\right|}{5\sqrt{a^2+b^2}}=\frac{1}{\sqrt{2}}\Leftrightarrow7a^2-48ab-7b^2=0\)

                         \(\Leftrightarrow\begin{cases}a=7b\\7a=-b\end{cases}\)

Nếu a=7b, chọn b=1, a=7, ta được đường thẳng d : \(7x+y-8=0\)

Nếu 7a=-b, chọn a=1, b=-7 ta được đường thẳng d : \(x-7y+6=0\)

 
 
 
 
3 tháng 4 2016

M(2;-1)

 

30 tháng 3 2017

Hỏi đáp Toán

30 tháng 3 2017

Giải bài 8 trang 93 SGK hình học 10 | Giải toán lớp 10

Trả Lời

Giải bài 8 trang 93 SGK hình học 10 | Giải toán lớp 10

Tick nha
3 tháng 12 2018

Gọi điểm cách đều hai đường thẳng (Δ1) và (Δ2) là M(x, y).

Ta có:

Giải bài 3 trang 93 SGK hình học 10 | Giải toán lớp 10

Vậy tập hợp các điểm M cách đều hai đường thẳng đã cho là đường thẳng: 5x + 3y + 2 = 0.

11 tháng 4 2017

Giả sử: \(d_{\left(M,\Delta_1\right)}=d_{\left(M,\Delta_2\right)}\)

\(\Rightarrow\dfrac{\left|2x+4y+7\right|}{\sqrt{2^2+4^2}}=\dfrac{\left|x-2y-3\right|}{\sqrt{1^2+2^2}}\)

\(\Rightarrow\sqrt{5}\left|2x+4y+7\right|=2\sqrt{5}\left|x-2y-3\right|\)

\(\Rightarrow\left|2x+4y+7\right|=2\left|x-2y-3\right|\)

* \(2x+4y+7=2\left(x-2y-3\right)\)

\(\Rightarrow8y+13=0\)

*\(2x+4y+7=-2\left(x-2y-3\right)\)

\(\Rightarrow4x+1=0\)

25 tháng 4 2017

Ta có \(M\in\Delta_1\Rightarrow M\left(2t+3;t\right)\)

.

Khoảng cách từ M đến đường thẳng \(\Delta_2\)bằng \(\dfrac{1}{\sqrt{2}}\)

\(\Rightarrow\)\(d\left(M,\Delta_2\right)=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\dfrac{\left|2t+3+t+1\right|}{\sqrt{1^2+1^2}}=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\left|3t+4\right|=1\)\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=\dfrac{-5}{3}\end{matrix}\right.\)

* \(t=-1\)

\(\Rightarrow M\left(1;-1\right)\)

*\(t=\dfrac{-5}{3}\)

\(\Rightarrow M\left(\dfrac{-1}{3};\dfrac{-5}{3}\right)\)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng