Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thực hiện phép chia đa thức \(f\left(x\right)\) cho \(g\left(x\right)\) ta được
\(x^4-9x^3+21x^2+x+a=\left(x^2-x-2\right)\left(x^2-8x+15\right)+a+30\)
Do đó dư của phép chia \(f\left(x\right)\) cho \(g\left(x\right)\) là \(a+30\).
a) Với \(a=-100\) dư của phép chia đa thức \(f\left(x\right)\) và \(g\left(x\right)\) là \(-100+30=-70\).
b) Để \(f\left(x\right)\) chia hết cho \(g\left(x\right)\) thì \(a+30=0\Leftrightarrow a=-30\).
Bài này trên violimpic à?
Quen thế.
\(A\left(x\right)=x^{19}+x^5-x^{1995}\)
\(Q\left(x\right)=x^2-1\)
\(A\left(x\right)=Q\left(x\right)+r\)
\(<=>x^{19}+x^5-x^{1995}=\left(x^2-1\right)+r\)
Điều này đúng với mọi x thuộc R
Vậy ta có x=1
=> 1+1+1=0+r
=>r=3
Vậy số dư là 3
Cách mình làm là phương pháp giá trị riêng, một phương pháp cực hay trong toán chia hết của các đa thức.
Nó còn là một định lí là định lí Bơzu.
Nhưng trong chương trình phổ thông, nó là phương pháp giá trị riêng.
Gọi đa thức đó là A ta có :
A chia x - 2 dư 5
A chia x - 3 dư 7
=> A chia (x-2)(x-3) dư 5*7 = 35
Viết lại cho dễ nhìn là :
\(1+x+x^{19}+x^{199}+x^{1995}=\left(-x\right)\left(1-x^{1994}\right)-x\left(1-x^{198}\right)-x\left(1-x^{18}\right)+4x+`\)do đó chia cho (1 - x2) dư (4x + 1)
4x+ ji tiep theo z