Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình mới tìm ra x và y chưa biết cách giải :
\(x^2-y^3=16=25-9\)
\(\Rightarrow\hept{\begin{cases}x=5\\y=3\end{cases}}\)
mk đang nghĩ....
\(xy+yz+zx=xyz\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Do vai trò của x;y;z bình đẳng như nhau;giả sử:\(1< x\le y\le z\)
\(\Rightarrow\frac{1}{x}\ge\frac{1}{y}\ge\frac{1}{z}\)
Khi đó,ta có:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
\(\Rightarrow\frac{1}{x}+\frac{1}{x}+\frac{1}{x}=1\)
\(\Rightarrow\frac{3}{x}\ge1\)
\(\Rightarrow x=3;x=2\)
+) Với \(x=3\)\(\Rightarrow\frac{1}{3}+\frac{1}{y}+\frac{1}{z}=1\)
\(\Rightarrow\frac{1}{y}+\frac{1}{z}=\frac{2}{3}\)
\(\Rightarrow\frac{1}{y}+\frac{1}{y}\ge\frac{2}{3}\)
\(\Rightarrow\frac{2}{y}\ge\frac{2}{3}\)
\(\Rightarrow y\le3\)
\(\Rightarrow y=2;y=3\)
+) với \(y=2\Rightarrow z=6\)
+) Với \(y=3\Rightarrow z=3\)
Với \(x=2\)
\(\Rightarrow\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\)
\(\Rightarrow\frac{2}{y}\ge\frac{1}{2}\)
\(\Rightarrow y=1;y=2;y=3;y=4\)
Đến đây rồi thử vào rồi tìm ra z.
Câu kết nhớ từ "HOÁN VỊ"
xy+x-y-1=4-1
x.(y+1)-(y+1)=3
(y+1).(x+1)=3
suy ra x+1 thuộc ước của 3 = +-1, +-3
rồi kẻ bảng xét ok