K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

[HÌNH HỌC CHUYÊN TOÁN 2021]Nhằm hỗ trợ các bạn trong việc ôn thi chuyên toán (đặc biệt về mảng hình học), sau khi thảo luận với các admin của page Cuộc thi Trí tuệ VICE, mình xin phép lập ra chuyên mục [Hình học chuyên toán 2021]Trả lời đúng và hay (không copy) sẽ được nhận 1-2GP/câu trả lời nha ^^Các bạn ơi, đừng quên like/share bài viết của page và mời bạn bè thích page để nhận được...
Đọc tiếp

[HÌNH HỌC CHUYÊN TOÁN 2021]

undefined

Nhằm hỗ trợ các bạn trong việc ôn thi chuyên toán (đặc biệt về mảng hình học), sau khi thảo luận với các admin của page Cuộc thi Trí tuệ VICE, mình xin phép lập ra chuyên mục [Hình học chuyên toán 2021]

Trả lời đúng và hay (không copy) sẽ được nhận 1-2GP/câu trả lời nha ^^

Các bạn ơi, đừng quên like/share bài viết của page và mời bạn bè thích page để nhận được những phần quà hấp dẫn của page nha. Ngoài ra các bạn có thể gửi những bài toán hay về cho page để được tính điểm xếp hạng nè.

Câu 1.

Cho tam giác ABC có ba góc nhọn và $AB<AC.$ Vẽ đường cao AH, đường tròn đường kính HB cắt AB tại D và đường tròn đường kính HC cắt AC tại E.

a) Chứng minh tứ giác ADHE nội tiếp.

b) Gọi I là giao của DE và BC. Chứng minh $IH^2=ID\cdot IE.$

c) Gọi $M,N$ lần lượt là giao của DE với đường tròn đường kính HB và đường tròn đường kính HC. Chứng minh giao điểm hai đường thẳng BM và CN năm trên đường thẳng AH.

Câu 2.

Cho tam giác nhọn ABC không cân có $AB<AC,$ trực tâm $H$ và đường trung tuyến AM. Gọi K là hình chiếu vuông góc của $H$ lên $AM,$ D là điểm đối xứng của $A$ qua $M$ và $L$ là điểm đối xứng của $K$ qua BC.

a) Chứng minh các tứ giác BCKH và ABLC nội tiếp.

b) Chứng minh $\angle LAB=\angle MAC.$

c) Gọi $I$ là hình chiếu vuông góc của $H$ lên $AL, X$ là giao của $AL$ và $BC.$ Chứng minh đường tròn ngoại tiếp tam giác $BHC$ và đường tròn ngoại tiếp tam giác $IXM$ tiếp xúc với nhau.

Câu 3.

Cho tam giác ABC là tam giác nhọn, không cân, có I là tâm đường tròn nội tiếp. Hai đường thẳng AI và BC cắt nhau tại điểm D. Gọi E, F lần lượt là điểm đối xứng của D qua các đường thẳng IB và IC.

a) Chứng minh EF//BC

b) Gọi M, N, J lần lượt là trung điểm $DE,DF,EF.$ Đường tròn ngoại tiếp tam giác AEM và tam giác AFN cắt nhau tại điểm thứ hai là P. Chứng minh $M,P,N,J$ đồng viên.

c) Chứng minh ba điểm $A,P,J$ thẳng hàng.

Ps. Em mượn hình của cô @Đỗ Quyên ạ.

5
19 tháng 3 2021

tth giờ chuyển sang hình rồi à :))

Câu 2:

Kẻ đường cao AG, BE, CF của tam giác ABC.

Dễ thấy tứ giác HKMG, HECG nội tiếp.

Do đó AK . AM = AH . AG = AE . AC. Suy ra tứ giác KECM nội tiếp.

Tương tự tứ giác KFCM nội tiếp.

Do đó \(\widehat{BKC}=\widehat{BKM}+\widehat{CKM}=\widehat{BFM}+\widehat{CEM}=\widehat{ABC}+\widehat{ACB}=\widehat{BHC}\). Suy ra tứ giác BHKC nội tiếp.

Ta có \(\widehat{BLC}=\widehat{BKC}=\widehat{BHC}=180^o-\widehat{BAC}\) nên tứ giác ABLC nội tiếp.

b) Ta có tứ giác KECM nội tiếp nên \(\widehat{MKC}=\widehat{MEC}=\widehat{ACB}\). Do đó \(\Delta MKC\sim\Delta MCA\left(g.g\right)\).

Suy ra \(\widehat{KCM}=\widehat{KAC}\Rightarrow\widehat{LAB}=\widehat{LCB}=\widehat{KCB}=\widehat{KAC}\).

c) Ta có kq quen thuộc là \(\Delta LMB\sim\Delta LCA\).

Kẻ tiếp tuyến Lx của (ABC) sao cho Lx nằm cùng phía với B qua AL.

Ta có \(\widehat{ALx}=\widehat{ACL}=\widehat{LMX}\Rightarrow\) Ax là tiếp tuyến của (LXM).

Do đó (ABC) và (LXM) tiếp xúc với nhau.

Ta có AI . AX = AH . AG = AK . AM nên I, X, M, K đồng viên.

Ta có kq quen thuộc là (HBC) và (ABC) đối xứng với nhau qua BC.

Lại có (IKMX) và (LMX) đối xứng với nhau qua BC.

Suy ra (HC) và (IKMX) cũng tiếp xúc với nhau.

19 tháng 3 2021

Câu 1 :

a Ta có \(\Lambda CHE\),  \(\Lambda HDB\) là các góc chắn nửa đường tròn đường kính HC;HB \(\Rightarrow\Lambda CHE=\Lambda HDB=90^0\)  Mà \(\Lambda CHE+\Lambda AEH=180^0\Rightarrow\Lambda HDB+\Lambda AEH=180^0\Rightarrow\) Tứ giác ADHE nội tiếp

b Từ câu a ta có:  tứ giác ADHE nt \(\Rightarrow\Lambda IEH=\Lambda DEH=\Lambda DAH=\Lambda BAH\) Mà \(\Lambda BAH=\Lambda BHD=\Lambda IHD\)( cùng phụ với góc ABH) 

\(\Rightarrow\Lambda IEH=\Lambda IHD\) Lại có \(\Lambda EIH=\Lambda HID\) \(\Rightarrow\Delta IEH\sim\Delta IHD\left(g.g\right)\Rightarrow\dfrac{IH}{ID}=\dfrac{IE}{IH}\Rightarrow IH^2=ID\cdot IE\)

c Gọi giao điểm của BM với AC là K; CN với AB là J

Từ câu a ta có tứ giác ADHE nt \(\Rightarrow\Lambda KAH=\Lambda EAH=\Lambda DEH=\dfrac{1}{2}sđMH\) Mà \(\Lambda MHA=\dfrac{1}{2}sđMH\Rightarrow\Lambda KAH=\Lambda MHA\) Lại có \(\Lambda ABK=\Lambda DMH\left(=\dfrac{1}{2}sđDM\right)\) ; \(\Lambda BAH=\Lambda BHD\) (từ câu b)

\(\Rightarrow\Lambda BAH+\Lambda KAH+\Lambda BAK=\Lambda MHA+\Lambda DMH+\Lambda BHD=\Lambda AHB=90^0\Rightarrow\Lambda BKA=90^0\) \(\Rightarrow\) BK vuông góc với CA tại K\(\Rightarrow BM\) vuông góc với AC tại K(1)

Chứng minh tương tự ta được: CN vuông góc với AB tại J(2)

Xét tam giác ABC có BK vuông góc với CA; CJ vuông góc với AB ; AH vuông góc với BC \(\Rightarrow\) BK;CJ;AH là 3 đường cao của tam giác ABC 

\(\Rightarrow BK;CJ;AH\) đồng quy \(\Rightarrow BM;CN;AH\) đồng quy

Bạn có muốn biết nơi nào bạn sẽ vừa HỌC vừa KIẾM TIỀN được không?BÀI TẬP KHÓ?CÓ ALFAZINăm học mới rồi, các bạn bè các anh chị hỗ trợ bài tập, hướng dẫn học tập, cuối năm đạt kết quả tốt? ✅Bạn không có ai để làm điều đóTruy cập: https://alfazi.edu.vn để trao đổi bài tập, chia sẻ tài liệu và tham gia hoạt động bổ ích cho học sinh, sinh viên nhé!Đặc biệt, khi bạn tham...
Đọc tiếp

Bạn có muốn biết nơi nào bạn sẽ vừa HỌC vừa KIẾM TIỀN được không?

BÀI TẬP KHÓ?
CÓ ALFAZI
Năm học mới rồi, các bạn bè các anh chị hỗ trợ bài tập, hướng dẫn học tập, cuối năm đạt kết quả tốt? ✅Bạn không có ai để làm điều đó
Truy cập: https://alfazi.edu.vn để trao đổi bài tập, chia sẻ tài liệu và tham gia hoạt động bổ ích cho học sinh, sinh viên nhé!
Đặc biệt, khi bạn tham gia giải đáp bài tập, bạn sẽ nhận được “phụ cấp” siêu khủng từ Web!
Một web học tập rất thân thiện, môi trường học tập cực tốt, Các bạn đừng bỏ phí cơ hội này nhé!
Web rất hân hạnh được đón tiếp những tài năng tương lai của đất nước!
❤️❤️😘😘😘Love you💋💋

TRUY CẬP HTTPS://ALFAZI.EDU.VN ĐỂ NHẬN 20.000 SAU KHI ĐĂNG KÍ!

3
16 tháng 8 2018

mị làm nghề phát tờ rơi à?

16 tháng 8 2018

nội quy chuyên mục.

Trong một lớp học ngoại ngữ, tập hợp A các học viên nữ có 4 phần tử, tập hợp B các học viên từ 20 tuổi trở lên có 5 phần tử. Có 3 học viên nữ từ 20 tuổi trở lên. Tìm số phần tử của tập hợp A ∪ B.Trên một bãi để xe, có 42 xe gồm taxi và xe buýt. Có 14 xe màu vàng và 37 xe buýt hoặc xe không có màu vàng. Hỏi trên bãi để xe có bao nhiêu xe buýt vàng? Một lớp học có 40 học sinh,...
Đọc tiếp

Trong một lớp học ngoại ngữ, tập hợp A các học viên nữ có 4 phần tử, tập hợp B các học viên từ 20 tuổi trở lên có 5 phần tử. Có 3 học viên nữ từ 20 tuổi trở lên. Tìm số phần tử của tập hợp A ∪ B.

Trên một bãi để xe, có 42 xe gồm taxi và xe buýt. Có 14 xe màu vàng và 37 xe buýt hoặc xe không có màu vàng. Hỏi trên bãi để xe có bao nhiêu xe buýt vàng? 

Một lớp học có 40 học sinh, trong đó có 15 em học khá môn Toán, 16 em học khá môn Văn và 17 em học khá môn Tiếng Anh. Có 5 em học khá cả hai môn Văn và Toán, 8 em học khá cả hai môn Toán và Anh, 6 em học khá cả hai môn Văn và Anh, và 2 em học khá cả ba môn. Hỏi có bao nhiêu học sinh

a. Chỉ học khá môn Toán

b. Chỉ học khá môn Văn?

c. Chỉ học khá môn Anh?

d. Không học khá môn nào?

0
10 tháng 4 2018

a) A ∩ B;

b) A\B;

c) \(\text{C_E(A ∩ B) = C_EA ∪ C_EB}\)

11 tháng 4 2018

a) A ∩ B ;

b) A \ B ;

c) C_E(A ∩ B) = C_EA ∪ C_EB

16 tháng 2 2021

Vậy là ở Thái Bình thì được đến trường rồi

Vui quá oaoaoaoaoaoa

16 tháng 2 2021

Em ở Bình Dương giờ học trực tuyến online thêm 1 tuần nữa huhukhocroi

10 tháng 6 2019

Em hông được đăng những câu hỏi linh tinh lên diễn đàn chj lớp 11 nên hông biết

10 tháng 6 2019

đây đâu phải câu hỏi linh tinh

e chỉ hỏi về tuyển sinh lớp 10 thôi mà