Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x;y > 0
\(pt\Leftrightarrow\sqrt{x+\sqrt{x+\sqrt{x}}}=y^2-x\)(bình phương + chuyển vế)
Vì \(\hept{\begin{cases}x;y\inℤ\\x;y\ge0\end{cases}\Rightarrow}x;y\inℕ\)
\(\Rightarrow y^2-x\inℕ\)(Vì VP > 0 nên VT > 0 mà 2 số này thuộc N nên hiệu của chúng thuộc N)
Đặt \(y^2-x=a\left(a\inℕ\right)\)
Khi đó \(\sqrt{x+\sqrt{x+\sqrt{x}}}=a\)
\(\Leftrightarrow\sqrt{x+\sqrt{x}}=a^2-x\)(bình phương+chuyển vế)
Tương tự như trên
Đặt \(a^2-x=b\left(b\inℕ\right)\)
\(\Rightarrow\sqrt{x+\sqrt{x}}=b\)
\(\Leftrightarrow x+\sqrt{x}=b^2\left(1\right)\)
Từ (1) => \(\sqrt{x}\inℕ\)
Ta có: \(\left(1\right)\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)=b^2\)
Vì \(\sqrt{x}\)và \(\sqrt{x}+1\)là 2 số tự nhiên liên tiếp
Mà b2 là số chính phương
\(\Rightarrow\sqrt{x}=0\)
\(\Rightarrow x=0\)
\(\Rightarrow y=0\)
Vậy pt có nghiệm duy nhất (x;y) = (0;0)
\(\sqrt{x-2+2\sqrt{x+1}}+\sqrt{x+10+6\sqrt{x+1}}=2\sqrt{x+2+2\sqrt{x+1}}\)
\(\Leftrightarrow\sqrt{x+1}+1+\left|\sqrt{x+1}-3\right|=2\cdot\left|\sqrt{x+1}-1\right|\)
Đặt \(y=\sqrt{x+1}\left(y\ge0\right)\)PT đã cho trở thành
\(y+1+\left|y-3\right|=2\left|y-1\right|\)
Nếu \(0\le y\le1:y+1+3-y=2-2y\Leftrightarrow y=-1\)(loại)
Nếu \(1\le y\le3:y+1+3-y=2y-2\Leftrightarrow y=3\)
Nếu y>3: y+1-y-3=2y-2 (vô nghiệm)
Với y=3 <=> x+1=9 <=> x=8
Vậy pt có 1 nghiệm x=8
2.
Nhân hai vế của phương trình với 6xy:
6y+6x+1=xy6y+6x+1=xy
Đưa về phương trình ước số:
x(y−6)−6(y−6)=37x(y−6)−6(y−6)=37
⇔(x−6)(y−6)=37⇔(x−6)(y−6)=37
Do vai trò bình đẳng của xx và yy, giả sử x⩾y⩾1x⩾y⩾1, thế thì x−6⩾y−6⩾−5x−6⩾y−6⩾−5.
Chỉ có một trường hợp:
{−6=37y−6=1⇔{=43y=7{−6=37y−6=1⇔{=43y=7
Đáp số: (43;7),(7;43)
xy - 2x - 3y + 1 = 0
<=> x(y - 2) = 3y - 1
<=> \(=\frac{3y-1}{y-2}=3+\frac{5}{y-2}\)
Để x nguyên thì (y - 2) phải là ước của 5 hay
(y - 2) = (1, 5, - 1, - 5)
Giải tiếp sẽ ra