K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2018

Coi phương trình đã cho là phương trình bậc hai a ẩn x, y là tham số. Dùng điều kiện có  nghiệm cuả phương trình để giải

10 tháng 8 2020

pt <=> \(16x^2+32xy+46y^2+32x-88y=2360\)

<=> \(\left(4x+4y+4\right)^2+30y^2-120y+120=2496\)

<=> \(\left(4x+4y+4\right)^2+30\left(y^2-4y+4\right)=2496\)

<=> \(8\left(x+y+1\right)^2+15\left(y-2\right)^2=2496\)

Có: \(15\left(y-2\right)^2\)là 15 lần của 1 SCP

=> \(0\le\left(y-2\right)^2\le\frac{2496}{15}\)

Mà \(\left(y-2\right)^2\)là 1 SCP 

=> \(\left(y-2\right)^2=0^2;1^2;...;12^2\)

Đến đây bạn xét từng trường hợp là ra rùi !!!!!!

a: =>(4x-1)2=0

=>4x-1=0

hay x=1/4=0,25

b: \(6x^2-10x-1=0\)

\(\Delta=\left(-10\right)^2-4\cdot6\cdot\left(-1\right)=100+24=124>0\)

Do đó; Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{10-2\sqrt{31}}{12}\simeq-0,09\\x_2=\dfrac{10+2\sqrt{31}}{12}\simeq1,76\end{matrix}\right.\)

c: \(5x^2+24x+9=0\)

\(\Delta=24^2-4\cdot5\cdot9=396>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-24-2\sqrt{99}}{10}\simeq-4,39\\x_2=\dfrac{-24+2\sqrt{99}}{10}\simeq-0,41\end{matrix}\right.\)

d: \(16x^2-10x+1=0\)

\(\Delta=\left(-10\right)^2-4\cdot16\cdot1=100-64=36>0\)

Do đó: Phương trình có hai nghiệm phân biệt là

\(\left\{{}\begin{matrix}x_1=\dfrac{10-6}{64}=\dfrac{4}{64}=\dfrac{1}{16}\\x_2=\dfrac{10+6}{64}=\dfrac{1}{4}\end{matrix}\right.\)

3 tháng 6 2020

Thay x=\(\frac{1}{2}\) vào phương trình ta có 

 \(8.\left(\frac{1}{2}\right)^2-8.\frac{1}{2}+m^2+1=0\)

\(\Leftrightarrow8.\frac{1}{4}-4+m^2+1=0\)

\(\Leftrightarrow2-4+m^2+1=0\)

\(\Leftrightarrow m^2-1=0\)

\(\Leftrightarrow m^2=1\Rightarrow m=\pm1\)

Thay m=1 vào phương trình ta có 

\(8x^2-8x+1^2+1=0\)

\(\Leftrightarrow8x^2-8x+2=0\)

Ta có  \(\Delta'=\left(-4\right)^2-8.2=16-16=0\)

\(\Rightarrow\)Phương trình có nghiệm kếp \(x_1=x_2=\frac{-b'}{a}=-\frac{-4}{8}=\frac{1}{2}\)

Thay m=-1 vào ta có kết quả tương tụ 

Vậy nghiệm còn lại là \(\frac{1}{2}\)

Nhớ k cho mình nha 

15 tháng 3 2020

Phương trình có nghiệm x = 1/2

=> \(8\left(\frac{1}{2}\right)^2-8\cdot\frac{1}{2}+m^2+1=0\)

=> \(8\cdot\frac{1}{4}-8\cdot\frac{1}{2}+m^2+1=0\)

=> 2 - 4 + m2 + 1 = 0 \(\Leftrightarrow\)m2-1=0  \(\Leftrightarrow\)m2 = 1 \(\Leftrightarrow\)m= \(\pm1\)

Vậy với m = \(\pm1\)thì x có nghiệm duy nhất là x = \(\frac{1}{2}\)