\(^{x^3-3x}\)


b)\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2018

a, Cho P(x) = 0

          \(\Rightarrow\) 2/5x+1/3=0

       \(\Rightarrow\)  2/5x= -1/3

          \(\Rightarrow\)x= -5/6

b,Cho Q(x)=0

          \(\Rightarrow\)(x-2)2017 - (x-2) = 0

                   \(\Rightarrow\)(x - 2) \(\times\)\([\left(x-2\right)^{2016}-1]\)= 0

                     \(\Rightarrow\)x - 2 = 0 hoặc (x - 2 )2016 -1 =0

                      \(\Rightarrow\)x = 2 hoặc x = 3 ; x = 1

10 tháng 4 2016

a) 0.8

c) ko có nghiệm

d) 0

e) 1

23 tháng 5 2018

a ) 

\(x^2-x+1=0\)

( a = 1 ; b= -1 ; c = 1 )

\(\Delta=b^2-4.ac\)

\(=\left(-1\right)^2-4.1.1\)

\(=1-4\)

\(=-3< 0\)

vì \(\Delta< 0\) nên phương trình vô nghiệm 

=> đa thức ko có nghiệm 

b ) đặc t = x (  \(t\ge0\) )

ta có : \(t^2+2t+1=0\)

( a = 1 ; b= 2 ; b' = 1 ; c =1 ) 

\(\Delta'=b'^2-ac\)

\(=1^2-1.1\)

\(=1-1=0\)

phương trình có nghiệp kép 

\(t_1=t_2=-\frac{b'}{a}=-\frac{1}{1}=-1\) ( loại )   

vì \(t_1=t_2=-1< 0\)

nên phương trình vô nghiệm 

Vay : đa thức ko có nghiệm 

24 tháng 5 2018

2/ Đặt \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)

Ta có \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)

=> \(f\left(x\right)=2x^2-3x+5+3x^2+3x-6\)

=> \(f\left(x\right)=5x^2-1\)

Khi \(f\left(x\right)=0\)

=> \(5x^2-1=0\)

=> \(5x^2=1\)

=> \(x^2=\frac{1}{5}\)

=> \(x=\sqrt{\frac{1}{5}}\)

Vậy f (x) có 1 nghiệm là \(x=\sqrt{\frac{1}{5}}\)

2 tháng 5 2017

a.

\(\left(x-1\right)\left(x+5\right)=0\Rightarrow\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)

b)

\(B\left(x\right)=5x^3-20x=0\)

\(\Leftrightarrow x\cdot\left(5x^2-20\right)=0\Rightarrow\orbr{\begin{cases}x=0\\5x^2-20=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x^2=4\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\end{cases}}}\)\(\Leftrightarrow x\cdot\left(5x^2-20\right)\Rightarrow\orbr{\begin{cases}x=0\\5x^2-20=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x^2=4\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\end{cases}}}\)

2 tháng 5 2020

\(\left(7x-3x^2y+\frac{1}{2}\right)-N=2xy-3x^2y+\frac{1}{3}x-2\)

\(N=\left(7x-3x^2y+\frac{1}{2}\right)-\left(2xy-3x^2y+\frac{1}{3}x-2\right)\)

\(N=7x-3x^2y+\frac{1}{2}-2xy+3x^2y-\frac{1}{3}x+2\)

\(N=\left(7-\frac{1}{3}\right)x+\left(3x^2y-3x^2y\right)-2xy+\left(\frac{1}{2}+2\right)\)

\(N=\frac{20}{3}x+0-2xy+\frac{5}{2}\)

\(N=\frac{20}{3}x-2xy+\frac{5}{2}\)

Thay x = -1 ; y = 1/2 vào N ta được :

\(N=\frac{20}{3}\left(-1\right)-2\left(-1\right)\cdot\frac{1}{2}+\frac{5}{2}\)

\(N=\frac{-20}{3}-\left(-1\right)+\frac{5}{2}\)

\(N=\frac{-20}{3}+1+\frac{5}{2}\)

\(N=\frac{-19}{6}\)

Vậy giá trị của N = -19/6 khi x = -1 ; y = 1/2

18 tháng 5 2018

Bài 1:

Thay x=1 vào đa thức F(x) ta được:

F(1) = 14+2.13-2.12-6.1+5 = 0

=> x=1 là nghiệm của đa thức F(x)

Tương tự ta thế -1; 2; -2 vào đa thức F(x)

Vậy x=1 là nghiệm của đa thức F(x)