Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét f(x)=0=>=x^2+x-6=0
=>x^2-2x+3x-6=0
=> x(x-2)+3(x-2)=0
=>(x-3)(x-2)=0
=> __x=3
|___x=2
vậy nghiệm của f(x) là 3 và 2
b) Để g(x) có nghiệm
\(\Leftrightarrow\left(x-1\right)\left(2-3x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2-3x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{2}{3}\end{cases}}\)
Vậy \(x\in\left\{1;\frac{2}{3}\right\}\)là nghiệm của đa thức g(x)
c) Để k(x) có nghiệm
\(\Leftrightarrow x^2-3x-4=0\)
\(\Leftrightarrow x^2+x-4x-4=0\)
\(\Leftrightarrow x\left(x+1\right)-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=4\end{cases}}}\)
Vậy \(x\in\left\{-1;4\right\}\)là nghiệm của đa thức
Câu 1 :
Ta có: \(f\left(x\right)=0\Leftrightarrow x^2+2x-3=0\)
\(\Leftrightarrow\left(x+1\right)^2-4=0\)
\(\Leftrightarrow\left(x+1\right)^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=4\\x+1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)
Vậy \(x\in\left\{-5;3\right\}\)là nghiệm của đa thức f(x)
Câu 2 :
\(q\left(x\right)=x^2-10x+29\)
\(=\left(x-5\right)^2+4\)
Ta có: \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-5\right)^2+4\ge4\forall x\)
Vậy đa thức trên ko có nghiệm
dễ mà
câu 1
f(x)=x^2+2x-3
ta có f(x)=0
suy ra x^2+2x-3=0
tương đương:x^2-x+3x-3=0
tương đương:x(x-1)+3(x-1)=0
tương đương: (x-1)(x+3)=0
tương đương: x-1=0 x=1
x+3=0 x=-3
vậy đa thức f(x) có hai nghiệm là 1 và -3
câu 2: x^2-10x+29
tương đương: x^2-5x-5x+25+4
tương đương: x(x-5)-5(x-5)+4
tương đương: (x-5)(x-5)+4
tương đương: (x-5)^2+4
vì (x-5)^2> hoặc bằng 0 với mọi x
4>0
suy ra x^2-10x+29 vô nghiệm
Bài 7:
Cho x+5=0
=> x=-5
Cho x2-2x=0
=> x2-2x+1-1=0
=>(x-1)2-1=0
=>(x-1)2=1
=>x-1=1 thì x=2
Nếu x-1=-1 thì x=1
TK MK NHA . CHÚC BẠN HỌC GIỎI
ĐÚNG 100% NHA
Có f(1) = \(1^4\)+2.\(1^3\)-2.\(1^2\)-6.1+5 = 1+2-2-6+5 = 0
=>1 là 1 nghiệm của f(x)
Có f(-1) = \(\left(-1\right)^4\)+2.\(\left(-1\right)^3\)-2.\(\left(-1\right)^2\)-6.(-1)+5 = 1-2-2+6+5 = 8
=>-1 không là 1 nghiệm của f(x)
Có f(2) = \(2^4\)+2.\(2^3\)-2.\(2^2\)-6.2+5 = 16+16-8-12+5 = 17
=>2 không là 1 nghiệm của f(x)
Có f(-2) = \(\left(-2\right)^4\)+2.\(\left(-2\right)^3\)-2.\(\left(-2\right)^2\)-6.(-2)+5 = 16-16-8+12+5 = 9
=>-2 không là 1 nghiệm của f(x)
Vậy 1 là 1 nghiệm của f(x)
f(x) = \(x^2+5\)
ta thấy \(x^2\ge0\forall x\)
=> \(x^2+5>0\forall x\)
=> f(x) ko có nghiệm