Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x3 + 8y3) : (2y + x)
= (x + 2y)(x2 - 2xy + 4y2) : (2y + x)
= x2 - 2xy + 4y2
b) (x3 + 3x2y + 3xy2 + y3) : (2x + 2y)
= (x + y)3 : 2(x + y)
= \(\dfrac{\left(x+y\right)^2}{2}\)
c) (6x5y2 - 9x4y3 + 15x3y4) : 3x3y2
= 3x3y2(2x2 - 3xy + 5y2) : 3x3y2
= 2x2 - 3xy + 5y2
Ik mk nha, hôm nay ngày mai, ngày kia mk ik 3 lần lại cho bạn (thành 9 lần)
Nhớ kb với mìn lun nha!! Mk rất vui đc làm quen vs bạn, cảm ơn mn nhìu lắm
a) \(A=x^2-8x+17=\left(x-4\right)^2+1\ge1\)
Vậy MIN A = 1 khi x = 4
b) \(T=x^2-4x+7=\left(x-2\right)^2+3\ge3\)
Vậy MIN T = 3 khi x = 2
c) \(H=3x^2+6x-1=3\left(x+1\right)^2-4\ge-4\)
Vậy MIN H = -4 khi x = -1
d) \(E=x^2+y^2-4\left(x+y\right)+16=\left(x-2\right)^2+\left(y-2\right)^2+8\ge8\)
Vậy MIN E = 8 khi x = y = 2
e) \(K=4x^2+y^2-4x-2y+3=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\)
Vậy MIN K = 1 khi x = 1/2; y = 1
f) \(M=\frac{3}{2}x^2+x+1=\frac{3}{2}\left(x+\frac{1}{3}\right)^2+\frac{5}{6}\ge\frac{5}{6}\)
Vậy MIN M = 5/6 khi x = -1/3
a. \(\left(x+y\right)^3+\left(x-y\right)^3\)
\(=x^3+3x^2y+3xy^2+y^3+x^3-3x^2y+3xy^2-y^3\)
\(=2x^3+6xy^2\)
\(=2x\left(x^2+6y^2\right)\)
b. \(x^3-y^3+2x^2-2y^2\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)+2\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)+2\left(x+y\right)\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2+2x+2y\right)\)
c. \(x^3-y^3-3x^2+3x-1\)
\(=\left(x^3-3x^2+3x-1\right)-y^3\)
\(=\left(x-1\right)^3-y^3\)
\(=\left(x-1-y\right)\left[\left(x-1\right)^2+\left(x-1\right)y+y^2\right]\)
\(=\left(x-y-1\right)\left(x^2+y^2+xy-2x-y+1\right)\)
a) x2( x - 1 ) - x + 1
= x2( x - 1 ) - ( x - 1 )
= ( x - 1 )( x2 - 1 )
= ( x - 1 )( x - 1 )( x + 1 )
= ( x - 1 )2( x + 1 )
b) ( a + b )3 - ( a - b )3
= ( a3 + 3a2b + 3ab2 + b3 ) - ( a3 - 3a2b + 3ab2 - b3 )
= a3 + 3a2b + 3ab2 + b3 - a3 + 3a2b - 3ab2 + b3
= 6a2b + 2b3
= 2b( 3a2 + b )
c) 6x( x - 3 ) + 9 - 3x2
= 6x2 - 18x + 9 - 3x2
= 3x2 - 18x + 9
= 3( x2 - 6x + 3 )
d) x( x - y ) - 5x + 5y
= x( x - y ) - ( 5x - 5y )
= x( x - y ) - 5( x - y )
= ( x - y )( x - 5 )
e) 3( x + 4 ) - x2 - 4x
= 3( x + 4 ) - ( x2 + 4x )
= 3( x + 4 ) - x( x + 4 )
= ( x + 4 )( 3 - x )
f) x2 + 4x - y2 + 4
= ( x2 + 4x + 4 ) - y2
= ( x + 2 )2 - y2
= ( x + 2 - y )( x + 2 + y )
g) x2 + 5x
= x( x + 5 )
h) -x2 + 2x + 2y + y2
= ( y2 - x2 ) + ( 2x + 2y )
= ( y - x )( y + x ) + 2( x + y )
= ( x + y )( y - x + 2 )
a,\(xy+3x-7y-21\)
\(=x\left(y+3\right)-7\left(y+3\right)\)
\(=\left(y+3\right)\left(x-7\right)\)
\(b,2xy-15-6x+5y\)
\(=\left(2xy-6x\right)+\left(-15+5y\right)\)
\(=2x\left(y-3\right)-5\left(3-y\right)\)
\(=2x\left(y-3\right)+5\left(y-3\right)\)
\(=\left(y-3\right)\left(2x+5\right)\)
a) \(x^2+2x+9=\left(x^2+2x+1\right)+8=\left(x+1\right)^2+8\)
Ta có :
\(\left(x+1\right)^2\ge0\)
\(\Rightarrow\left(x+1\right)^2+8\ge8>0\)
Do đó đa thức vô nghiệm.
Vậy...
b) \(y^2-y+1=\left(y^2-2.\frac{1}{2}y+\frac{1}{4}\right)+\frac{3}{4}=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\)
Ta có :
\(\left(y-\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
Do đó đa thức vô nghiệm.
Vậy ...
c) \(2y^2-2y+4\)
\(=2y^2-2y+\frac{1}{2}+\frac{7}{2}\)
\(=2\left(y^2-2.\frac{1}{2}.y+\frac{1}{4}\right)+\frac{7}{2}\)
\(=2\left(y-\frac{1}{2}\right)^2+\frac{7}{2}\)
Ta có :
\(\left(y-\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow2\left(y-\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow2\left(y-\frac{1}{2}\right)^2+\frac{7}{2}\ge\frac{7}{2}>0\)
Do đó đa thức vô nghiệm
Vậy...
d) \(3x^4+x^2+2\)
\(=2x^4+\left(x^4+2.\frac{1}{2}x^2+\frac{1}{4}\right)+3\)
\(=2\left(x^2\right)^2+\left(x^2+\frac{1}{2}\right)^2+3\)
Ta có :
\(\left(x^2\right)^2\ge0\)
\(\Rightarrow2\left(x^2\right)^2\ge0\)
\(\left(x^2+\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow2\left(x^2\right)^2+\left(x^2+\frac{1}{2}\right)^2+3\ge3>0\)
Do đó đa thức vô nghiệm.
Vậy ...
e) \(x^2+x+1=\left(x^2+2.\frac{1}{2}.x+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Ta có :
\(\left(x+\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
Do đó đa thức vô nghiệm.
Vậy ...
f) \(x^2-6x+5=x^2-x-5x+5\)
\(=x\left(x-1\right)-5\left(x-1\right)\)
\(=\left(x-5\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=5\\x=1\end{cases}.}\)
g) \(x^3-x^2+2\)
\(=x^3-x^2+2x-2x+2\)
\(=\left(x^3-x\right)-\left(x^2-x\right)-2\left(x-1\right)\)
\(=x\left(x^2-1\right)-x\left(x-1\right)-2\left(x-1\right)\)
\(=x\left(x+1\right)\left(x-1\right)-x\left(x-1\right)-2\left(x-1\right)\)
\(=\left[x\left(x+1\right)-x-2\right]\left(x-1\right)\)
\(=\left(x^2+x-x-2\right)\left(x-1\right)\)
\(=\left(x^2-2\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-2=0\\x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\in\left\{-\sqrt{2};\sqrt{2}\right\}\\x=1\end{cases}}\)
Vậy \(\orbr{\begin{cases}x\in\left\{-\sqrt{2};\sqrt{2}\right\}\\x=1\end{cases}}.\)