Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- -6x3 + x2 + 5x - 2 = 0
=> -6x3 - 6x2 + 7x2 + 7x - 2x - 2 = 0
=> -6x2(x+1) + 7x(x+1) - 2(x+1) = 0
=> (x+1)(-6x2+7x-2) = 0
=> (x+1)(x2-\(\frac{7}{6}x+\frac{1}{3}\)) = 0
\(\Rightarrow\left(x+1\right)\left(x-\frac{1}{2}\right)\left(x-\frac{2}{3}\right)=0\)
=> x = -1 hoặc x = 1/2 hoặc x = 2/3
- 3x3 + 19x2 + 4x - 12 = 0
=> 3x3 + 3x2 + 16x2 + 16x - 12x - 12 = 0
=> (x+1)(3x2+16x-12)=0
=> (x+1)\(\left(x^2+\frac{16}{3}x-4\right)=0\)
=> (x+1) \(\left(x-\frac{2}{3}\right)\left(x+6\right)=0\)
=> x = -1 hoặcx = 2/3 hoặc x = -6
- 2x3 - 11x2 + 10x + 8 = 0
=> 2x3 - 4x2 - 7x2 + 14x - 4x + 8 = 0
=> 2x2(x - 2) - 7x(x - 2) - 4(x - 2) = 0
=> (x - 2)(2x2 - 7x - 4)=0
=> (x - 2)(\(x^2-\frac{7}{2}x-2\)) = 0
=> \(\left(x-2\right)\left(x-4\right)\left(x+\frac{1}{2}\right)=0\)
=> x = 2 hoặc x = 4 hoặc x = -1/2
\(a.\left(2x-3\right)+\left(x+9\right)=0\)
\(3x+6=0\Rightarrow x=-2\)
\(b.10x-2x^2=0\)
\(\Rightarrow10x=2x^2\Rightarrow x=5\)
\(c.2x^2-5x-7=0\)
\(2x^2+2x-7x-7=0\)
\(2x\left(x+1\right)-7\left(x+1\right)=0\)
\(\left(2x-7\right)\left(x+1\right)=0\Rightarrow\orbr{\begin{cases}2x-7=0\\x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3,5\\x=-1\end{cases}}\)
a, Ta có : \(2x-3+x+9=0\Leftrightarrow3x+6=0\Leftrightarrow x=-2\)
b, \(-2x^2+10x=0\Leftrightarrow-2x\left(x-5\right)=0\Leftrightarrow x=0;x=5\)
c, \(2x^2-7x+2x-7=0\Leftrightarrow\left(x+1\right)\left(2x-7\right)=0\Leftrightarrow x=-1;x=\frac{7}{2}\)
3) tìm m để x = -1 là nghiệm của đa thức M(x) = x^2 - mx +2
\(\Rightarrow M\left(x\right)=x^2-mx+2\)
\(\Leftrightarrow\left(-1\right)^2-m\left(-1\right)+2=0\)
\(\Leftrightarrow1-m\left(-1\right)=-2\)
\(\Leftrightarrow m\left(-1\right)=3\)
\(\Leftrightarrow m=-3\)
vậy với m = -3 thì x= -1 là nghiệm của đa thức M(x)
4) \(K\left(x\right)=a+b\left(x-1\right)+c\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow K\left(1\right)=a+b\left(1-1\right)+c\left(1-1\right)\left(1-2\right)=1\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow K\left(2\right)=a+b\left(2-1\right)+c\left(2-1\right)\left(2-2\right)=3\)
\(\Leftrightarrow K\left(2\right)=a+b=3\)
\(\Leftrightarrow K\left(0\right)=a+b\left(0-1\right)+c\left(0-1\right)\left(0-2\right)=5\)
\(\Leftrightarrow a+\left(-b\right)+c2=5\)
ta có \(\hept{\begin{cases}a=1\\a+b=3\\a+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\1+b=3\\1+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\-1+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c2=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)
vậy \(a=1;b=2;c=3\)
1. a) Sắp xếp :
f(x) = -x5 - 7x4 - 2x3 + x4 + 4x + 9
g(x) = x5 + 7x4 + 2x3 + 2z2 - 3x - 9
b) h(x) = f(x) + g(x)
= -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9
= ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 2x2 + x2 ) - 3x + ( 9 - 9 )
= 3x2- 3x
c) h(x) có nghiệm <=> 3x2 - 3x = 0
<=> 3x( x - 1 ) = 0
<=> 3x = 0 hoặc x - 1 = 0
<=> x = 0 hoặc x = 1
Vậy nghiệm của h(x) là x= 0 hoặc x = 1
2. D(x) = A(x) + B(x) - C(x)
= 6x3 + 5x2 + x3 - x2 - ( -2x3 + 4x2 )
= 6x3 + 5x2 + x3 - x2 + 2x3 - 4x2
= ( 6x3 + x3 + 2x3 ) + ( 5x2 - x2 - 4x2 )
= 9x3
b) D(x) có nghiệm <=> 9x3 = 0 => x = 0
Vậy nghiệm của D(x) là x = 0
3. M(x) = x2 - mx + 2
x = -1 là nghiệm của M(x)
=> M(-1) = (-1)2 - m(-1) + 2 = 0
=> 1 + m + 2 = 0
=> 3 + m = 0
=> m = -3
Vậy với m = -3 , M(x) có nghiệm x = -1
4. K(x) = a + b( x - 1 ) + c( x - 1 )( x - 2 )
K(1) = 1 => a + b( 1 - 1 ) + c( 1 - 1 )( 1 - 2 ) = 1
=> a + 0b + c.0.(-1) = 1
=> a + 0 = 1
=> a = 1
K(2) = 3 => 1 + b( 2 - 1 ) + c( 2 - 1 )( 2 - 2 ) = 3
=> 1 + 1b + c.1.0 = 3
=> 1 + b + 0 = 3
=> b + 1 = 3
=> b = 2
K(0) = 5 => 1 + 5( 0 - 1 ) + c( 0 - 1 )( 0 - 2 ) = 5
=> 1 + 5(-1) + c(-1)(-2) = 5
=> 1 - 5 + 2c = 5
=> 2c - 4 = 5
=> 2c = 9
=> c = 9/2
Vậy a = 1 ; b = 2 ; c = 9/2
Tìm nghiệm của đa thức sau:
a) P(x)= x2+4x+3
x2 + 4x + 3 = 0
<=> x2 + x + 3x + 3 = 0
<=> x(x + 1) + 3(x + 1) = 0
<=> (x + 1)(x + 3) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}}\)
Vậy x = -1 ; x = -3 là nghiệm của đa thức P(x)
b) Q(x)= 2x2-5x+3
2x2 - 5x + 3 = 0
<=> 2x2 - 2x - 3x + 3 = 0
<=> (2x2 - 2x) - (3x - 3) = 0
<=> 2x(x - 1) - 3(x - 1) = 0
<=> (x - 1)(2x - 3) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{3}{2}\end{cases}}}\)
Vậy x = 1 ; x = 3/2 là nghiệm của đa thức Q(x)
c) R(x)= 2x2-x-1
2x2 - x - 1 = 0
<=> 2x2 - 2x + x - 1 = 0
<=> 2x(x - 1) + (x - 1) = 0
<=> (x - 1)(2x + 1) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-1}{2}\end{cases}}}\)
Vậy x = 1 ; x = -1/2 là nghiệm của đa thức R(x)
d) S(x)= 3x2-x-4
3x2 - x - 4 = 0
<=> 3x2 + 3x - 4x - 4 = 0
<=> (3x2 + 3x) - (4x + 4) = 0
<=> 3x(x + 1) - 4(x + 1) = 0
<=> (x + 1)(3x - 4) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\3x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{4}{3}\end{cases}}}\)
Vậy x = -1 ; x = 4/3 là nghiệm của đa thức S(x)
\(P\left(x\right)=2x^2+3\)
\(Q\left(x\right)=-x^3+2x^2-x+2\)
\(Px-Qx=x^3+x+1\)
Px - Qx - Rx = 0 => Rx = -(x^3 + x +1)
Q(2) = -2^3 + 2.2^2 - 2 + 2 = 0 => x = 2 là nghiệm của Qx
P(2) = 2.2^2 + 3 = 11 khác 0 => x = 2 không phải là nghiệm của Px
-thaytoan.edu.vn-
a)P(x) = 4x2 + x3 - 2x + 3 - x - x3 + 3x - 2x2
= (4x2 - 2x2) + (x3 - x3) + (-2x - x + 3x) + 3
= 2x2 + 3
=> 2x2 + 3
Q(x) = 3x2 - 3x + 2 - x3 + 2x - x2
= (3x2 - x2) + (-3x + 2x) - x3 + 2
= 2x2 - x - x3 + 2
=> x3 - 2x2 - x + 2
c) Ta có:
P(2) = 2x2 + 3
= 2.22 + 3
= 11 (vô lý)
Q(2) = x3 - 2x2 - x + 2
= 23 - 2.22 - 2 + 2
= 0 (thỏa mãn)
Vậy x = 2 là nghiệm của Q(x) nhưng không phải là nghiệm của P(x)
a)Ta có:\(2x^3+x^2-4x-2=0\)
\(\Leftrightarrow x^2\left(2x+1\right)-2\left(2x+1\right)=0\)
\(\Leftrightarrow\left(x^2-2\right)\left(2x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-2=0\\2x+1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=2\\x=-\frac{1}{2}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\sqrt{2};-\sqrt{2}\\x=-\frac{1}{2}\end{cases}}\)
b)Ta có:\(3x^2+2x-5=0\)
\(\Leftrightarrow3x^2-3x+5x-5=0\)
\(\Leftrightarrow3x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Leftrightarrow\left(3x+5\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+5=0\\x-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{5}{3}\\x=1\end{cases}}\)
:))
Ta có:
h(x)= -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2-( 2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2)
=> h(x)=-2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2-2x2 + x3 - 3x - 3x3 - x2 + x + 9x - 2)
=> h(x)=x2+5x-2
b,
Cho x2+5x-2=0
=> ... tự giải :))
a,f(x)=2x^3+3x^2-2x+3
g(x)=2x^3+3x^2-7x+2
h(x)=f(x)-g(x)=(2x^3+3x^2-2x+3)-(2x^3+3x^2-7x+2)
=2x^3+3x^2-2x+3-2x^3-3x^2+7x-2
=(2x^3-2x^3)+(3x^2-3x^2)+(-2x+7x)+(3-2)
=5x+1
b,Đặt_h(x)=5x+1=0
5x=0-1
5x=-1
x=-1/5
Vậy_nghiệm_của_đa_thức_h(x)_là_-1/5
Câu 1: a) x = 1 là nghiệm của đa thức f(x)
b) x = -1 là nghiệm của đa thức g(x)
c) x = 1 là nghiệm của đa thức h(x)
Câu 2: Số 1 là ngiệm của đa thức f(x)
a) H(x) = 2x2 - 4x
= 2x(x - 2)
Cho 2x(x-2) = 0
=>\(\orbr{\begin{cases}2x=0\\x-2=0\end{cases}}\)=>\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy x = 0; x = 2 là các nghiệm của đa thức H(x)
b) R(x) = x2 + 10x + 36
= x2 + 5x + 5x + 25 + 11
= (x2 + 5x) + (5x + 25) +11
= x(x + 5) + 5(x + 5) + 11
= (x + 5)(x + 5) + 11
= (x + 5)2 +11
Vì (x + 5)2 ≥ 0\(\forall x\in R\)
nên (x + 5)2 + 11 > 0\(\forall x\in R\)
Vậy không có nghiệm nào của đa thức R(x)
a) H(x) = 2x2 - 4x
= 2x(x - 2)
Cho 2x(x-2) = 0
=>[
=>[
Vậy x = 0; x = 2 là các nghiệm của đa thức H(x)
b) R(x) = x2 + 10x + 36
= x2 + 5x + 5x + 25 + 11
= (x2 + 5x) + (5x + 25) +11
= x(x + 5) + 5(x + 5) + 11
= (x + 5)(x + 5) + 11
= (x + 5)2 +11
Vì (x + 5)2 ≥ 0∀x∈R
nên (x + 5)2 + 11 > 0∀x∈R
Vậy không có nghiệm nào của đa thức R(x)