K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Đặt A(x)=0

\(\Leftrightarrow4x-1=0\)

\(\Leftrightarrow4x=1\)

hay \(x=\frac{1}{4}\)

Vậy: \(x=\frac{1}{4}\) là nghiệm của đa thức A(x)=4x-1

b) Đặt B(x)=0

\(\Leftrightarrow4x-1-2x-3=0\)

\(\Leftrightarrow2x-4=0\)

\(\Leftrightarrow2x=4\)

hay x=2

Vậy: x=2 là nghiệm của đa thức B(x)=4x-1-2x-3

c) Đặt C(x)=0

\(\Leftrightarrow\left(4x-1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-1=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=1\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{4}\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{4};\frac{3}{2}\right\}\) là nghiệm của đa thức C(x)=(4x-1)(2x-3)

d) Đặt D(x)=0

\(\Leftrightarrow x^2-1=0\)

\(\Leftrightarrow x^2=1\)

hay \(x=\pm1\)

Vậy: \(x=\pm1\) là nghiệm của đa thức \(D\left(x\right)=x^2-1\)

e) Đặt E(x)=0

\(\Leftrightarrow x^2-4x=0\)

\(\Leftrightarrow x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Vậy: \(x\in\left\{0;4\right\}\) là nghiệm của đa thức \(E\left(x\right)=x^2-4x\)

f) Đặt F(x)=0

\(\Leftrightarrow4x-8x^2=0\)

\(\Leftrightarrow4x\left(1-2x\right)=0\)

\(4\ne0\)

nên \(\left[{}\begin{matrix}x=0\\1-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{1}{2}\right\}\) là nghiệm của đa thức \(F\left(x\right)=4x-8x^2\)

Ta có x2-x+1=(x2-2*1/2x+1/4)+3/4 =(x-1/2)2+3/4.

vì (x-1/2)2 >=0 với mọi x => (x-1/2)2+3/4 >=3/4 >0

vậy đa thức x2-x+1 vô nghiệm

26 tháng 3 2016

câu 1,

trong sách nâng cao và phát triển toán 7 tập 2 trang 15 có bài tương tự đấy.

26 tháng 3 2016

2/ a. Ta có : x- 5x + 6 = x- 3x - 2x + 6 = ( x​- 3x ) + ( - 2x + 6 ) = x ( x - 3 ) - 2 ( x - 3 ) = ( x - 3  )( x - 2 ) = 0 => x - 3 = 0 hoặc x - 2 = 0 => x = 3 hoặc x = 2

c. Tá có : 6x^2 - 11x + 3 = 6x^2 - 9x - 2x + 3 = ( 6x^2 -  9x ) + ( - 2x + 3 ) = 3x ( 2x - 3 ) - ( 2x - 3 ) = ( 2x - 3 )( 3x - 1 ) = 0 => 2x-3 =0 hoặc 3x-1 =0 => x= 3/2 hoặc x =1/3

Mấy bài sau làm tương tự nha

11 tháng 8 2020

Bài 1: tìm nghiệm của đa thức.

a) A(x) =\(\frac{1}{3}\)x + 1

⇔ 0 = \(\frac{1}{3}x+1\)

⇔ 0 = x + 3

⇔ -x = 3

⇔ x = -3

b) B(x) = \(\frac{2}{3}\)x +\(\frac{1}{5}\)

⇔ 0 = \(\frac{2}{3}x+\frac{1}{5}\)

⇔ 0 = 10x + 3

⇔ -10x = 3

⇔ x = \(-\frac{3}{10}\)

c) C(x) = (4x-1) . (2x+3)

⇔ 0 = (4x - 1).(2x + 3)

⇔ (4x -1).(2x +3) = 0

\(\left[{}\begin{matrix}4x-1=0\\2x+3=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\frac{1}{4}\\x=-\frac{3}{2}\end{matrix}\right.\)

d) D(x) = (-5x+2).(x-7)

⇔ 0 = (-5x +2).(x - 7)

⇔ (-5x +2).( x -7) = 0

\(\left[{}\begin{matrix}-5x+2=0\\x-7=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\frac{2}{5}\\x=7\end{matrix}\right.\)

e) E(x) = -4x2+8x

⇔ 0 = -4x2 + 8x

⇔ -4x2 + 8x = 0

⇔ -4x.(x-2) = 0

⇔ x.(x-2) = 0

\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Bài 6; tìm đa thức A biết :

a) A + 7x2y - 5xy2 -xy = x2y +8xy2 -5xy

A = x2y + 8xy2 -5xy -7x2y + 5xy2 + xy

A= -6x2y + 13xy2 - 4xy

b) 4x2 -7x +1- A = 3x2 -7x -1

⇔ 4x2 + 1 - A = 3x2 -1

-A= 3x2 -1 -4x2 -1

-A= -x2 - 2

A= x2 + 2

AH
Akai Haruma
Giáo viên
28 tháng 7 2019

Lời giải:
a)

\(2x^2-x=0\)

\(\Leftrightarrow x(2x-1)=0\Rightarrow \left[\begin{matrix} x=0\\ 2x-1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=0\\ x=\frac{1}{2}\end{matrix}\right.\)

Vậy nghiệm của đa thức là $0$ và $\frac{1}{2}$

b)

\(x^2+4x+3=0\)

\(\Leftrightarrow x^2+x+3x+3=0\Leftrightarrow x(x+1)+3(x+1)=0\)

\(\Leftrightarrow (x+1)(x+3)=0\Rightarrow \left[\begin{matrix} x+1=0\\ x+3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-1\\ x=-3\end{matrix}\right.\)

Vậy nghiệm của đa thức là $-1$ và $-3$

c)

\(4x^2-4x+1=0\)

\(\Leftrightarrow 4x^2-2x-2x+1=0\)

\(\Leftrightarrow 2x(2x-1)-(2x-1)=0\Leftrightarrow (2x-1)^2=0\Rightarrow x=\frac{1}{2}\)

Vậy nghiệm của đa thức là $x=\frac{1}{2}$

d)

\(x^2-4x=0\)

\(\Leftrightarrow x(x-4)=0\Rightarrow \left[\begin{matrix} x=0\\ x-4=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=0\\ x=4\end{matrix}\right.\)

Vậy nghiệm của đa thức là $0$ và $4$

e)

\(x^2+3x+2=0\)

\(\Leftrightarrow x^2+x+2x+2=0\)

\(\Leftrightarrow x(x+1)+2(x+1)=0\)

\(\Leftrightarrow (x+1)(x+2)=0\Rightarrow \left[\begin{matrix} x=-1\\ x=-2\end{matrix}\right.\)

Vậy........

f)

\(x^2-6x+9=0\)

\(\Leftrightarrow x^2-3x-3x+9=0\)

\(\Leftrightarrow x(x-3)-3(x-3)=0\Leftrightarrow (x-3)^2=0\Rightarrow x=3\)

Vậy.......

11 tháng 8 2020

3)  tìm m để x = -1 là nghiệm của đa thức M(x) = x^2 - mx +2

\(\Rightarrow M\left(x\right)=x^2-mx+2\)

\(\Leftrightarrow\left(-1\right)^2-m\left(-1\right)+2=0\)

\(\Leftrightarrow1-m\left(-1\right)=-2\)

\(\Leftrightarrow m\left(-1\right)=3\)

\(\Leftrightarrow m=-3\)

vậy với m = -3 thì x= -1 là nghiệm của đa thức M(x)

4) \(K\left(x\right)=a+b\left(x-1\right)+c\left(x-1\right)\left(x-2\right)\)

\(\Leftrightarrow K\left(1\right)=a+b\left(1-1\right)+c\left(1-1\right)\left(1-2\right)=1\)

\(\Leftrightarrow a=1\)

\(\Leftrightarrow K\left(2\right)=a+b\left(2-1\right)+c\left(2-1\right)\left(2-2\right)=3\)

\(\Leftrightarrow K\left(2\right)=a+b=3\)

\(\Leftrightarrow K\left(0\right)=a+b\left(0-1\right)+c\left(0-1\right)\left(0-2\right)=5\)

\(\Leftrightarrow a+\left(-b\right)+c2=5\)

ta có \(\hept{\begin{cases}a=1\\a+b=3\\a+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\1+b=3\\1+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\-1+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c2=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)

vậy \(a=1;b=2;c=3\)

11 tháng 8 2020

1. a) Sắp xếp :

f(x) = -x5 - 7x4 - 2x3 + x4 + 4x + 9

g(x) = x5 + 7x4 + 2x3 + 2z2 - 3x - 9

b) h(x) = f(x) + g(x)

           = -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9

           = ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 2x2 + x2 ) - 3x + ( 9 - 9 )

           = 3x2- 3x

c) h(x) có nghiệm <=> 3x2 - 3x = 0

                             <=> 3x( x - 1 ) = 0

                             <=> 3x = 0 hoặc x - 1 = 0

                             <=> x = 0 hoặc x = 1

Vậy nghiệm của h(x) là x= 0 hoặc x = 1

2. D(x) = A(x) + B(x) - C(x)

            = 6x3 + 5x2 + x3 - x2 - ( -2x3 + 4x2 )

            = 6x3 + 5x2 + x3 - x2 + 2x3 - 4x2

            = ( 6x3 + x3 + 2x3 ) + ( 5x2 - x2 - 4x2 ) 

            = 9x3 

b) D(x) có nghiệm <=> 9x3 = 0 => x = 0 

Vậy nghiệm của D(x) là x = 0

3. M(x) = x2 - mx + 2

x = -1 là nghiệm của M(x)

=> M(-1) = (-1)2 - m(-1) + 2 = 0

=>              1 + m + 2 = 0

=>              3 + m = 0

=>              m = -3

Vậy với m = -3 , M(x) có nghiệm x = -1

4. K(x) = a + b( x - 1 ) + c( x - 1 )( x - 2 )

K(1) = 1 => a + b( 1 - 1 ) + c( 1 - 1 )( 1 - 2 ) = 1

              => a + 0b + c.0.(-1) = 1

              => a + 0 = 1

              => a = 1

K(2) = 3 => 1 + b( 2 - 1 ) + c( 2 - 1 )( 2 - 2 ) = 3

              => 1 + 1b + c.1.0 = 3

              => 1 + b + 0 = 3

              => b + 1 = 3

              => b = 2

K(0) = 5 => 1 + 5( 0 - 1 ) + c( 0 - 1 )( 0 - 2 ) = 5

              => 1 + 5(-1) + c(-1)(-2) = 5

              => 1 - 5 + 2c = 5

              => 2c - 4 = 5

              => 2c = 9

              => c = 9/2

Vậy a = 1 ; b = 2 ; c = 9/2

18 tháng 8 2020

a, \(f\left(x\right)=4x^3-2x^2+5x+1-4x^3-3x^2+4x+1\)

\(=-5x^2+9x+2\)

b, Hệ số cao nhất : -5 hệ số tự do : 2

c, \(-5x^2+9x+2\Leftrightarrow-\left(5x+1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{5}\\x=2\end{cases}}\)

2 tháng 5 2018

a, \(4x+9\)

Để đa thức trên có nghiệm thì:

\(4x+9=0\Rightarrow x=\dfrac{-9}{4}\)

Vậy, ...

b, \(-5x+6\)

Để đa thức trên có nghiệm thì:

\(-5x+6=0\Rightarrow x=\dfrac{-6}{5}\)

Vậy, ...

c, \(x^2-1\)

Để đa thức trên có nghiệm thì:

\(x^2-1=0\Rightarrow x^2=1\Rightarrow x=\pm1\)

Vậy, ...

d, \(x^2-9\)

Để đa thức trên có nghiệm thì:

\(x^2-9=0\Rightarrow x^2=9\Rightarrow x=\pm3\)

e, \(x^2-x\)

Để đa thức trên có nghiệm thì:

\(x^2-x=0\Rightarrow x\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy, ...

f, \(x^2-2x\)

Để đa thức trên có nghiệm thì:

\(x^2-2x=0\Rightarrow x\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy, ...

g, \(x^2-3x\)

Để đa thức trên có nghiệm thì:

\(x^2-3x=0\Rightarrow x\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy, ...

h, \(3x^2-4x\)

Để đa thức trên có nghiệm thì:

\(3x^2-4x=0\Rightarrow x\left(3x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)

Vậy, ...

2 tháng 5 2018

d)<=>x^2=9=(+-3)^2

x=+-3

h)<=> x(3x-4)=0

x=0;x=4/3

7 tháng 7 2016

C(x)= 2x-3=0 hoac 5x+7=0

        2x=0+3        5x=0-7

        2x=3            5x=-7

         x=3:2            x=-7:5

          x=1.5            x=-1.4