K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm

a) Ta có: n3− 8n+ 2n ⋮ ( n+ 1 )

⇔ ( n+ n ) − (8n+ 8 ) + n + 8 ⋮ n+ 1

⇔ n( n+ 1 ) − 8( n2+1 ) + n + 8 ⋮ n+ 1

⇒ n + 8 ⋮  n2 + 1⇒ ( n − 8 )( n + 8 ) ⋮ n2 + 1

⇔ ( n+ 1 )   − 65 ⋮ n+ 1

⇒ 65 ⋮ n+ 1 mà dễ dàng nhận thấy n+ 1 ≥ 1 nên n+ 1 ϵ 1 ; 5 ; 13 ; 65 hay nϵ 0 ; 4 ; 12 ; 64nϵ 0 ; 4 ; 12 ; 64

⇒n ϵ − 8 ; −2 ; 0 ; 2 ; 8 
Thay lần lượt các giá trị của x tìm được, ta nhận các giá trị x = −8 ; 0 ; 2x = −8 ; 0 ; 2

# Chúc bạn học tốt #

3 tháng 6 2017

undefined

5 tháng 6 2017

2

\(\dfrac{n^3-8n^2+2n}{n^2+1}=\dfrac{n\left(n^2+1\right)-8\left(n^2+1\right)+n+8}{n^2+1}\)

để n3-8n2+2n chia hết cho n2+1 thì (n+8) phải chia hết cho n2+1

với n=0=> \(\dfrac{n+8}{n^2+1}=8\left(tm\right)\)

với n=1 => \(\dfrac{n+8}{n^2+1}=\dfrac{9}{2}->loai\)

với n=2=> \(\dfrac{n+8}{n^2+1}=2->tm\)

với n=3 => \(\dfrac{n+8}{n^2+1}=\dfrac{11}{10}\left(loai\right)\)

với \(n\ge4\) => \(n+8< n^2+1\)

Vậy n=0 và n=2

AH
Akai Haruma
Giáo viên
8 tháng 8 2018

Bài 1:

Nếu $n$ không chia hết cho $7$ thì:

\(n\equiv 1\pmod 7\Rightarrow n^3\equiv 1^3\equiv 1\pmod 7\Rightarrow n^3-1\vdots 7\)

\(n\equiv 2\pmod 7\Rightarrow n^3\equiv 2^3\equiv 1\pmod 7\Rightarrow n^3-1\vdots 7\)

\(n\equiv 3\pmod 7\Rightarrow n^3\equiv 3^3\equiv -1\pmod 7\Rightarrow n^3+1\vdots 7\)

\(n\equiv 4\equiv -3\pmod 7\Rightarrow n^3\equiv (-3)^3\equiv 1\pmod 7\Rightarrow n^3-1\vdots 7\)

\(n\equiv 5\equiv -2\pmod 7\Rightarrow n^3\equiv (-2)^3\equiv -1\pmod 7\Rightarrow n^3+1\vdots 7\)

\(n\equiv 6\equiv -1\pmod 7\Rightarrow n^3\equiv (-1)^3\equiv -1\pmod 7\Rightarrow n^3+1\vdots 7\)

Vậy \(n^3-1\vdots 7\) hoặc \(n^3+1\vdots 7\)

AH
Akai Haruma
Giáo viên
8 tháng 8 2018

b)

Đặt \(A=mn(m^2-n^2)(m^2+n^2)\)

Nếu $m,n$ có cùng tính chẵn lẻ thì \(m^2-n^2\) chẵn, do đó \(A\vdots 2\)

Nếu $m,n$ không cùng tính chẵn lẻ, có nghĩa trong 2 số $m,n$ tồn tại một số chẵn và một số lẻ, khi đó \(mn\vdots 2\Rightarrow A\vdots 2\)

Tóm lại, $A$ chia hết cho $2$

---------

Nếu trong 2 số $m,n$ có ít nhất một số chia hết cho $3$ thì \(mn\vdots 3\Rightarrow A\vdots 3\)

Nếu cả hai số đều không chia hết cho $3$. Ta biết một tính chất quen thuộc là một số chính phương chia $3$ dư $0$ hoặc $1$. Vì $m,n$ không chia hết cho $3$ nên:

\(m^2\equiv n^2\equiv 1\pmod 3\Rightarrow m^2-n^2\vdots 3\Rightarrow A\vdots 3\)

Vậy \(A\vdots 3\)

-----------------

Nếu tồn tại ít nhất một trong 2 số $m,n$ chia hết cho $5$ thì hiển nhiên $A\vdots 5$

Nếu cả 2 số đều không chia hết cho $5$. Ta biết rằng một số chính phương khi chia $5$ dư $0,1,4$. Vì $m,n\not\vdots 5$ nên \(m^2,n^2\equiv 1,4\pmod 5\)

+Trường hợp \(m^2,n^2\) cùng số dư khi chia cho $5$\(\Rightarrow m^2-n^2\equiv 0\pmod 5\Rightarrow m^2-n^2\vdots 5\Rightarrow A\vdots 5\)

+Trường hợp $m^2,n^2$ không cùng số dư khi chia cho $5$

\(\Rightarrow m^2+n^2\equiv 1+4\equiv 0\pmod 5\Rightarrow m^2+n^2\vdots 5\Rightarrow A\vdots 5\)

Tóm lại $A\vdots 5$

Vậy \(A\vdots (2.3.5)\Leftrightarrow A\vdots 30\) (do $2,3,5$ đôi một nguyên tố cùng nhau)

Ta có đpcm.

11 tháng 10 2020

Ta có: \(\frac{2n^3+n^2+7n+1}{2n-1}=\frac{\left(2n-1\right)\left(n^2+n+4\right)+5}{2n-1}=n^2+n+4+\frac{5}{2n-1}\)

Để 2n+ n+ 7n + 1 chia hết cho 2n - 1 thì \(\frac{5}{2n-1}\in\Rightarrow\Leftarrow5⋮2n-1\Rightarrow2n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Ta lập bảng giá trị sau:

\(2n-1\)\(1\)\(-1\)\(5\)\(-5\)
\(n\)\(1\)\(0\)\(3\)\(-2\)

Vậy \(n\in\left\{1;0;3;-2\right\}\)thì 2n+ n+ 7n + 1 chia hết cho 2n - 1

11 tháng 10 2020

\(2n^3+n^2+7n+1\)

\(=\left(2n-1\right)\left(n^2+n+4\right)+5\)

\(\Rightarrow\frac{2n^3+n^2+7n+1}{2n-1}=n^2+n+4+\frac{5}{2n-1}\)

Để vế trái nguyên thì \(2n-1\)là Ư(5).

\(\Rightarrow n=-2,0,1,3\)

26 tháng 12 2016

Để đơn thức A chia hết cho -3xn+2yn+1 khi và chỉ khi 

\(\hept{\begin{cases}n+2\le2n\\n+1\le3\end{cases}\Leftrightarrow\hept{\begin{cases}n+2\le2n\\n\le2\end{cases}}}\)

Thay n = 2 vào \(n+2\le2n\), ta có : 

\(2+2\le2\times2\)(t/mãn) 

Vậy n\(\le2\) thì Đơn thúc A chia hết cho đơn thức B 

17 tháng 1 2017

Gớm nhỉ: bái phục