Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a;n^2+n-n+3 chia hết n+1
n(n+1)-n+3 chia hết n+1
-n+3 chia hết n+1
n-3 chia hết n+1
n+1-4 chia hết n+1
-4 chia hết n+1
4 chia hết n+1
Tiếp theo bạn làm hộ mk nhé
B; 4n-5 chia hết 2-3n
4n-5 chia hết 3n-2
3(4n-5) chia hết 3n-2
12n-15 chia hết 3n-2
12n-8-7 chia hết 3n-2
4(2n-2) -7 chia hết 3n-2
-7 chia hết 3n-2
7 chia hết 3n-2
Bạn làm nha
k mk nhé
Bài 2:
Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)
1:
\(n^2+4n+3\)
\(=n^2+3n+n+3\)
\(=\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=4\left(k+1\right)\left(k+2\right)\)
Vì k+1;k+2 là hai số nguyên liên tiếp
nên \(\left(k+1\right)\left(k+2\right)⋮2\)
=>\(4\left(k+1\right)\left(k+2\right)⋮8\)
hay \(n^2+4n+3⋮8\)
2: \(n^3+3n^2-n-3\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)
\(=2k\left(2k+2\right)\left(2k+4\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì k;k+1;k+2 là ba số nguyên liên tiếp
nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)
=>\(k\left(k+1\right)\left(k+2\right)⋮6\)
=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)
hay \(n^3+3n^2-n-3⋮48\)
Để n + 1 chia hết cho n thì 1 chia hết cho n
Nên n thuộc Ư(1) = {-1;1}
Vậy n = {-1;1}
Ta có : 2n + 3 chia hết cho n - 1
Nên 2n - 2 + 5 chia hết cho n - 1
<=> 2.(n - 1) + 5 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n - 1 thuộc Ư(5) = {-5;-1;1;5}
=> n = {-4;0;2;6}
a) ta có: 1 -3n chia hết cho 2n +1
=> 2 - 6n chia hết cho 2n +1
=> 5 - 3 - 6n chia hết cho 2n +1
5 - 3.(1+2n) chia hết cho 2n + 1
...
bn tự làm tiếp đk r
b) ta có: 2-7n chia hết cho 2n + 5
=> 4 - 14n chia hết cho 2n + 5
=> 39 - 35 - 14n chia hết cho 2n + 5
39 - 7.(5+2n) chia hết cho 2n +5
...
c) ta có: 4n + 9 chia hết cho 3n + 1
=> 12n + 27 chia hết cho 3n + 1
12n + 4+23 chia hét cho 3n + 1
4.(3n+1) + 23 chia hết cho 3n + 1
...
d) ta có: n^2 + 2n + 7 chia hết cho n+2
=> n.(n+2) + 7 chia hết cho n + 2
....
e) ta có: n^2 + n + 1 chia hết cho n + 1
=> n.(n+1) + 1 chia hết cho n + 1
...
a) Vì 4n-5 chia hết cho n-3 nên 4n - 12 + 7 chia hết cho n-3
Vì 4n - 12 = 4.(n-3) chia hết cho n-3,4n-12+7 chia hết cho n-3
Suy ra 7 chia hết cho n-3
Suy ra n-3 thuộc ước của 7
Suy ra n-3 thuộc {1;-1;7;-7}
Suy ra n thuộc{4;2;10;-4}
Vậy _______________________
b)Vì n^2 + 4n + 11 chia hết cho n+4 nên n(n+4) + 11 chia hết cho n+4
Mà n(n+4) chia hết cho n+4 nên 11 chia hết cho n+4
Suy ra n+4 thuộc ước của 11
Suy ra n+4 thuộc {1;-1;11;-11}
Suy ra n thuộc {-3;-5;7;-15}
Vậy ________________
n mũ2 +3:n+1 suy ra 3:n+1 mà 3 chỉ chia hết cho 1;3 vậy n+1=3;1 nếu n+1=1 thì n=0(thỏa mãn đề bài ) nếu n+1=3 thì n=2(không thỏa mãn) vậy n=0
muon qua