K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2017

Mong bạn k cho mk !!!

a) \(\frac{4}{n+1}\)

=> 4 \(⋮\)n + 1 

=> n + 1 \(\in\)Ư( 4 ) = { 1 ; -1 ; 2 ; -2 ; 4 ; -4 }

=> n \(\in\){ 0 ; -2 ; 1 ; -3 ; 3 ; -5 }

b) \(\frac{-27}{2n-3}\)

=> -27 \(⋮\)2n - 3

=> 2n - 3\(\in\){ 1 ; -1 ; 3 ; -3 ; 9 ; -9 ; 27 ; -27 }

=> Lập bảng :

2n - 3 1  -1  3  -3  9  -9 27 -27
  2n 4 2 6 0 12 -6 30 -24
  n 2 1 3 0 6 -3 15 -12

Vậy n \(\in\){ -12 ; -3 ; 0 ; 1 ; 2 ; 3 ; 6 ; 15 }

c)\(\frac{n+3}{n-2}\)

có : n + 3 \(⋮\)n - 2

      n - 2 \(⋮\)n - 2

=> ( n + 3 ) - ( n - 2 ) \(⋮\)( n - 2 )

=> n + 3 - n + 2 \(⋮\)n - 2

           5            \(⋮\)n - 2

=> n - 2 \(\in\)Ư( 5 ) = { 1 ; -1 ; 5 ; -5 }

=> n \(\in\){ 3 ; 1 ; 7 ; -3 }

24 tháng 5 2017

\(a.\) Để \(\frac{4}{n+1}\in Z\) thì \(4⋮n+1\)

\(\Rightarrow n+1\inƯ\left(4\right)=\left\{-1;1;2;-2;4;-4\right\}\)

\(\Rightarrow n\in\left\{-2;0;1;-3;3;-5\right\}\)

\(b.\)Để \(\frac{-27}{2n-3}\in Z\) thì \(-27⋮2n-3\)

Đến đây bn tự nghĩ típ nha.

\(c.\)\(\Rightarrow n+3⋮n-2\)

\(\Rightarrow\left(n-2\right)+5⋮n-2\)

\(\Rightarrow5⋮n-2\)

Tự làm típ nha

24 tháng 12 2016

A=n+3 chia hết cho n+1

mà n+3 =(n+1)+2

vì n+1 chia hết cho n+1

nên A chia hết cho n+1 

khi2chia hết cho n+1

suy ra n+1 thuộc ước của 2

suy ra n+1 thuộc {1;2}

mà n thuộc Z  Suy ra n thuộc { 0;1}

Câu 2 dựa theo cách trên mà tự làm 

24 tháng 12 2016

\(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=\frac{n+1}{n+1}+\frac{2}{n+1}=1+\frac{2}{n+1}\)

Để \(A\in Z\)<=> n + 1 \(\in\)Ư(2) = {-1;1;-2;2}

n + 1-11-22
n-20-31

\(\frac{3n-5}{n-4}=\frac{3n-12-17}{n-4}=\frac{3\left(n-4\right)-17}{n-1}=\frac{3\left(n-4\right)}{n-4}-\frac{17}{n-4}\)

Để \(B\in Z\) <=> n - 4 \(\in\)Ư(17) = {1;-1;17;-17}

n - 41-117-17
n5321-13
13 tháng 2 2020

\(B=\frac{n+3}{n-4}=\frac{n-4+7}{n-4}=\frac{n-4}{n-4}+\frac{7}{n-4}=1+\frac{7}{n-4}\)

=> n-4\(\in\)Ư(7)={-1,-7,1,7}

=> n\(\in\){3,-3,5,11}

\(C=\frac{2n+1}{2n-3}=\frac{2n-3+4}{2n-3}=\frac{2n-3}{2n-3}+\frac{4}{2n-3}=1+\frac{4}{2n-3}\)

=> 2n-3 \(\in\)Ư(4)={-1,-2,-4,1,2,4}

=> n\(\in\){1,2}

13 tháng 2 2020

Trl 

-Bạn đó làm đúng rồi nhé ~!

Hok tốt 

nhé bạn

4 tháng 3 2018

mình cần gấp nhé

4 tháng 3 2018

\(a)\) Ta có : 

\(A=\frac{6n-2}{3n+1}=\frac{6n+2-4}{3n+1}=\frac{2\left(3n+1\right)-4}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{4}{3n+1}=2+\frac{4}{3n+1}\)

Để A là số nguyên thì \(\frac{4}{3n+1}\) phải là số nguyên \(\Rightarrow\)\(4⋮\left(3n+1\right)\)\(\Rightarrow\)\(\left(3n+1\right)\inƯ\left(4\right)\)

Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Do đó : 

\(3n+1\)\(1\)\(-1\)\(2\)\(-2\)\(4\)\(-4\)
\(n\)\(0\)\(\frac{-2}{3}\)\(\frac{1}{3}\)\(-1\)\(1\)\(\frac{-5}{3}\)

Lại có  \(n\inℤ\) nên \(n\in\left\{-1;0;1\right\}\)

Câu b) là tương tự rồi tính n ra, sau đó thấy n nào giống với câu a) rồi trả lời  

23 tháng 3 2018

a, \(B=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}\in Z\)

 <=> \(n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Giải ra ta được : \(n=\left\{0;-2;4;-6\right\}\)

b, \(C=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\in Z\)

<=> \(n-2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Giải ra ta được : \(n=\left\{3;1;7;-3\right\}\)

c, \(D=\frac{-3\left(n+1\right)+5}{n+1}=-3+\frac{5}{n+1}\in Z\)

<=> \(n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Giải ra ta được : \(n=\left\{0;-2;4;-6\right\}\)

20 tháng 12 2021

cục cức chấm mắm

22 tháng 4 2019

\(\frac{1}{n+1}+\frac{n}{n+1}+\frac{2n+1}{n+1}\)\(=\frac{1+n+2n+1}{n+1}\)\(=\frac{3n+2}{n+1}\)