K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2023

 \(\dfrac{4n^2-9}{2n+3}=\dfrac{\left(2n+3\right)\left(2n-3\right)}{2n+3}=2n-3\)

Để \(\dfrac{4n^2-9}{2n+3}\) là số nguyên

\(\Rightarrow2n-3\in Z\)

\(\Rightarrow\forall n\in Z\)

17 tháng 9 2017

a)\(A=\frac{2n-5}{n+3}=\frac{2n+6-11}{n+3}=\frac{2n+6}{n+3}-\frac{11}{n+3}=2-\frac{11}{n+3}\)

\(2\in Z\Rightarrow\)Để \(A=2-\frac{11}{n+3}\in Z\)thì \(\frac{11}{n+3}\in Z\Rightarrow n+3\inƯ\left(11\right)\)

\(Ư\left(11\right)=\left(\pm1;\pm11\right)\Rightarrow n+3=\left(\pm1;\pm11\right)\)

*\(n+3=1\Rightarrow n=-2\)

*\(n+3=-1\Rightarrow n=-4\)

*\(n+3=11\Rightarrow n=8\)

*\(n+3=-11\Rightarrow n=-14\)

8 tháng 8 2016

\(A=\frac{4n+1}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)

Vậy để A nguyên thì 2n+3\(\in\)Ư(5)

Mà Ư(5)={1;-1;5;-5}

=>2n+3={1;-1;5;-5}

Ta có bảng sau

2n+31-15-5
n-1-2 1-4

Vậy n={-1;-2;-4;1}

 

8 tháng 8 2016

Vì \(\frac{4n+1}{2n+3}\) là số nguyên nên  \(4n+1⋮2n+3\)

\(\Rightarrow4n+6-5⋮2n+3\)

\(\Rightarrow2\left(2n+3\right)-5⋮2n+3\)

\(\Rightarrow5⋮2n+3\)

\(\Rightarrow2n+3\in\left\{\pm1;\pm5\right\}\)

Nếu 2n + 3 = 1 thì n = -1

Nếu 2n + 3 = -1 thì n = -2

Nếu 2n + 3 = 5 thì n = 1

Nếu 2n + 3 = -5 thì n = -4

Vậy \(n\in\left\{-1;-2;1;-4\right\}\)

23 tháng 6 2021

`a in ZZ`

`=>6n-4 vdots 2n+1`

`=>3(2n+1)-7 vdots 2n+1`

`=>7 vdots 2n+1`

`=>2n+1 in Ư(7)={+-1,+-7}`

`=>2n in {0,-2,6,-8}`

`=>n in {0,-1,3,-4}`

`b in ZZ`

`=>3n+2 vdots 4n-4`

`=>12n+8 vdots 4n-4`

`=>3(4n-4)+20 vdots 4n-4`

`=>20 vdots 4n-4`

`=>4n-4 in Ư(20)={+-1,+-2,+-4,+-5,+-10,+-20}`

`=>4n-4 in {+-4,+-20}`

`=>n-1 in {+-1,+-5}`

`=>n in {0,2,6,-4}`

`c in ZZ`

`=>4n-1 vdots 3-2n`

`=>2(3-2n)-7 vdots 3-2n`

`=>7 vdots 3-2n`

`=>3-2n in Ư(7)={+-1,+-7}`

`=>2n in {4,0,-4,10}`

`=>n in {2,0,-2,5}`

23 tháng 6 2021

a) đk: \(n\ne\dfrac{-1}{2}\)

Để \(\dfrac{6n-4}{2n+1}\) nguyên

<=> \(\dfrac{3\left(2n+1\right)-7}{2n+1}\) nguyên

<=> \(3-\dfrac{7}{2n+1}\) nguyên

<=> \(7⋮2n+1\)

Ta có bảng 

2n+11-17-7
n0-13-4
 tmtmtmtm

 

b)đk: \(n\ne1\)

Để \(\dfrac{3n+2}{4n-4}\) nguyên

=> \(\dfrac{3n+2}{n-1}\) nguyên

<=> \(\dfrac{3\left(n-1\right)+5}{n-1}\) nguyên

<=> \(3+\dfrac{5}{n-1}\) nguyên

<=> \(5⋮n-1\)

Ta có bảng: 

n-11-15-5
n206-4
Thử lạitmloạitm

loại

 

c) đk: \(n\ne\dfrac{3}{2}\)

Để \(\dfrac{4n-1}{3-2n}\) nguyên

<=> \(\dfrac{4n-1}{2n-3}\) nguyên

<=> \(\dfrac{2\left(2n-3\right)+5}{2n-3}\) nguyên

<=> \(2+\dfrac{5}{2n-3}\) nguyên

<=> \(5⋮2n-3\)

Ta có bảng: 

2n-31-15-5
n214-1
 tmtmtmtm

 

18 tháng 10 2018

Bài 1:

Để \(A=\frac{a-5}{10-a}\) là số hữu tỉ dương

=> \(a-5\ge0\Rightarrow a\ge5\)

\(10-a\ge0\Rightarrow a\ge10\)

KL: a lớn hơn hoặc bằng 10 thì A là 1 số hữu tỉ dương

18 tháng 10 2018

Bài 2: tìm n thuộc Z, để x = 2n-1/n-1 ; y = n-1/2n-1 là số nguyên  ( bài 2 bn thiếu điều kiện thì phải

a) ta có: \(x=\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2.\left(n-1\right)+1}{n-1}=2+\frac{1}{n-1}\)

Để x nguyên

=> 1/n-1 nguyên

=> 1 chia hết cho n-1

=> n - 1 thuộc Ư(1)={1;-1}

nếu n - 1 = 1 => n = 2 (TM)

n-1 = -1  => n = 0 (TM)

KL:...

b) Để y nguyên

\(\Rightarrow\frac{n-1}{2n-1}\) nguyên

=> n - 1 chia hết cho 2n - 1

=> 2n - 2 chia hết cho 2n - 1

2n - 1 - 1 chia hết cho 2n - 1

mà 2n-1 chia hết cho 2n - 1 

=> 1 chia hết cho 2n - 1

=> 2n - 1 thuộc Ư(1)={1;-1}

nếu 2n - 1 = 1 => 2n = 2 => n = 1 (TM)

2n - 1 = - 1 => 2n = 0 => n = 0 (TM)

KL:..

19 tháng 8 2020

Ko ai giúp mình à

Mình cần gấp

Mong các anh chị giúp minh

19 tháng 8 2020

đdddddddddddddddddddddddddddddddd

a, Để 3/(n-1) nguyên 

<=> 3 chia hết cho n-1 

Mà n-1 nguyên 

=> n-1 thuộc Ư(3)={-3,-1,1,3}  

=> n=-2,0,2,4

24 tháng 8 2017

a)\(n-3\ne0\Leftrightarrow n\ne3\)

b)\(n-3>0\Leftrightarrow n>3\)

c)\(n-3< 0\Leftrightarrow n< 3\)