Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Để \(\frac{n+3}{n-2}\) âm => \(\frac{n+3}{n-2}<0\) mà n - 2 < n + 3 => n - 2 < 0 => n < 2
Vậy n < 2 thì \(\frac{n+3}{n-2}\) là số âm.
b/ Để \(\frac{n+7}{3n-1}\) nguyên => n + 7 chia hết cho 3n - 1
=> 3 (n + 7) chia hết cho 3n - 1
=> 3n + 21 chia hết cho 3n - 1
=> 22 chia hết cho 3n - 1
=> 3n - 1 ∈ Ư(22)
=> 3n - 1 ∈ { ±1 ; ±2 ; ±11 ; ±22 }
- Nếu 3n - 1 = 1 => 3n = 2 => n = 2/3 (ko thỏa mãn n ∈ Z)
- Nếu 3n - 1 = -1 => 3n = 0 => n = 0 (thỏa mãn)
- Nếu 3n - 1 = 2 => 3n = 3 => n = 1 (thỏa mãn)
- Nếu 3n - 1 = -2 => 3n = -1 => n = -1/3 (ko thỏa mãn n ∈ Z)
- Nếu 3n - 1 = 11 => 3n = 12 => n = 4 (thỏa mãn)
- Nếu 3n - 1 = -11 => 3n = -10 => n = -10/3 (ko thỏa mãn n ∈ Z)
- Nếu 3n - 1 = 22 => 3n = 23 => n = 23/3 (ko thỏa mãnn ∈ Z)
- Nếu 3n - 1 = -22 => 3n = -21 => n = -7 (thỏa mãn)
Vậy n ∈ { 0 ; 1 ; 4 ; -7 } thì \(\frac{n+7}{3n-1}\) là số nguyên.
c/ Để \(\frac{3n+2}{4n-5}\in N\) => 3n + 2 chia hết cho 4n - 5
=> 4 (3n + 2) chia hết cho 4n - 5
=> 12n + 8 chia hết cho 4n - 5
=> 23 chia hết cho 4n - 5
=> 4n - 5 ∈ Ư(23)
=> 4n - 5 ∈ { 1 ; 23 }
- Nếu 4n - 5 = 1 => 4n = 6 => n = 3/2 (ko thoả mãn n ∈ Z)
- Nếu 4n - 5 = 23 => 4n = 28 => n = 7 (thỏa mãn)
Vậy n = 7 thì \(\frac{3n+2}{4n-5}\in N\)
Mình giải theo cách lớp 6 nhé :
a)Ta có: 2n+1 chia hết cho n-3 (1)
Mà n-3 chia hết cho n-3
=>2(n-3) chia hết cho n-3
=>2n-6 chia hết cho n-3 (2)
Từ (1) và (2) => (2n+1) - (2n-6) chia hết cho n-3
=>7 chia hết cho n-3
=> n-3 thuộc Ư(7)
=>n-3 thuộc {1; 7}
=>n thuộc {4; 10}
b)Ta có: n.n+3 chia hết cho n+1 (3)
Mà n+1 chia hết cho n+1
=>n(n+1) chia hết cho n+1
=>n.n +n chia hết cho n+1 (4)
Từ (3) và (4) =>(n.n+n) - (n.n + 3) chia hết cho n+1
=> n-3 chia hết cho n+1 (5)
Mà n+1 chia hết cho n+1 (6)
Từ (5) và (6) =>(n+1) - (n-3) chia hết cho n+1
=> 4 chia hết cho n+1
=>n+1 thuộc Ư(4)
=>n+1 {1;2;4}
=>n thuộc {0; 1; 3}
Nhọc lắm bạn à !
a, Để n+3/n-2 thuộc Z thì n+3 phải chia hết cho n-2
Ta có :n+3=n-2+5
Để n+3 chia hết cho n-2 thì 5 chia hết cho n-2
n-2 thuộc Ư(5)=1;-1;5;-5}
-Nếu n-2=1 thì n=3
-Nếu n-2=-1 thì n=1
-Nếu n-2=5 thì n=7
-Nếu n-2=-5 thì n=-3
Vậy n thuộc {3;1;7;-3} để n+3/n-2 thuộc Z
A=n+3 chia hết cho n+1
mà n+3 =(n+1)+2
vì n+1 chia hết cho n+1
nên A chia hết cho n+1
khi2chia hết cho n+1
suy ra n+1 thuộc ước của 2
suy ra n+1 thuộc {1;2}
mà n thuộc Z Suy ra n thuộc { 0;1}
Câu 2 dựa theo cách trên mà tự làm
\(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=\frac{n+1}{n+1}+\frac{2}{n+1}=1+\frac{2}{n+1}\)
Để \(A\in Z\)<=> n + 1 \(\in\)Ư(2) = {-1;1;-2;2}
n + 1 | -1 | 1 | -2 | 2 |
n | -2 | 0 | -3 | 1 |
\(\frac{3n-5}{n-4}=\frac{3n-12-17}{n-4}=\frac{3\left(n-4\right)-17}{n-1}=\frac{3\left(n-4\right)}{n-4}-\frac{17}{n-4}\)
Để \(B\in Z\) <=> n - 4 \(\in\)Ư(17) = {1;-1;17;-17}
n - 4 | 1 | -1 | 17 | -17 |
n | 5 | 3 | 21 | -13 |