Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 3 chia hết cho n nên n thuộc Ư (3) . Mà Ư(3)=....... Suy ra n thuộc ...... Vậy n thuộc..... (Tự điền vào chỗ chấm nha hướng dẫn thoi)
Bài 1:
b) Ta có:
\(16^5=2^{20}\)
\(\Rightarrow B=16^5+2^{15}=2^{20}+2^{15}\)
\(\Rightarrow B=2^{15}.2^5+2^{15}\)
\(\Rightarrow B=2^{15}\left(2^5+1\right)\)
\(\Rightarrow B=2^{15}.33\)
\(\Rightarrow B⋮33\) (Đpcm)
c) \(C=5+5^2+5^3+5^4+...+5^{100}\)
\(\Rightarrow C=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(\Rightarrow C=1\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{98}\left(5+5^2\right)\)
\(\Rightarrow\left(1+5^2+...+5^{98}\right)\left(5+5^2\right)\)
\(\Rightarrow C=Q.30\)
\(\Rightarrow C⋮30\) (Đpcm)
Bài 1 : a, \(A=1+3+3^2+...+3^{118}+3^{119}\)
\(A=\left(1+3+3^2+3^3\right)+...+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)
\(A=\left(1+3+3^2+3^3\right)+...+3^{116}\left(1+3+3^2+3^3\right)\)
\(A=1.30+...+3^{116}.30=\left(1+...+3^{116}\right).30⋮3\)
Vậy \(A⋮3\)
b, \(B=16^5+2^{15}=\left(2.8\right)^5+2^{15}\)
\(=2^5.8^5+2^{15}=2^5.\left(2^3\right)^5+2^{15}\)
\(=2^5.2^{15}+2^{15}.1=2^{15}\left(32+1\right)=2^{15}.33⋮33\)
Vậy \(B⋮33\)
c, Tương tự câu a nhưng nhóm 2 số
Bài 2 : a, \(n+2⋮n-1\) ; Mà : \(n-1⋮n-1\)
\(\Rightarrow\left(n+2\right)-\left(n-1\right)⋮n-1\)
\(\Rightarrow n+2-n+1⋮n-1\Rightarrow3⋮n-1\)
\(\Rightarrow n-1\in\left\{1;3\right\}\Rightarrow n\in\left\{2;4\right\}\)
Vậy \(n\in\left\{2;4\right\}\) thỏa mãn đề bài
b, \(2n+7⋮n+1\)
Mà : \(n+1⋮n+1\Rightarrow2\left(n+1\right)⋮n+1\Rightarrow2n+2⋮n+1\)
\(\Rightarrow\left(2n+7\right)-\left(2n+2\right)⋮n+1\)
\(\Rightarrow2n+7-2n-2⋮n+1\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\in\left\{1;5\right\}\Rightarrow n\in\left\{0;4\right\}\)
Vậy \(n\in\left\{0;4\right\}\) thỏa mãn đề bài
c, tương tự phần b
d, Vì : \(4n+3⋮2n+6\)
Mà : \(2n+6⋮2n+6\Rightarrow2\left(2n+6\right)⋮2n+6\Rightarrow4n+12⋮2n+6\)
\(\Rightarrow\left(4n+12\right)-\left(4n+3\right)⋮2n+6\)
\(\Rightarrow4n+12-4n-3⋮2n+6\Rightarrow9⋮2n+6\)
\(\Rightarrow2n+6\in\left\{1;2;9\right\}\Rightarrow2n=3\Rightarrow n\in\varnothing\)
Vậy \(n\in\varnothing\)
a) -3 \(⋮\)3n+1
=> 3n+1 \(\in\)Ư(-3)
=> 3n+1 \(\in\){-1;1;3;-3}
Ta co bang:
3n+1 | -3 | -1 | 1 | 3 |
n | -4/3 | -2/3 | 0 | 2/3 |
loại | loại | chọn | loại |
KL
b) 8\(⋮\)2n+1
=> 2n+1\(\in\) Ư{8}
=>2n+1 \(\in\){-1;1;4;2;8;-2;-4;-8}
vì 2n là số chẵn => 2n+1 là số lẻ
=> 2n+1\(\in\){-1;1}
2n+1 | -1 | 1 |
n | -1 | 0 |
chọn | chọn |
c)n+1 \(⋮\)n-2
=> n-2 +3 \(⋮\)n-2
Vì n-2\(⋮\)n-2 mà n-2+3\(⋮\)n-2
=>3\(⋮\)n-2
=>n-2\(\in\) Ư{3}
=>n-2\(\in\){-1;-3;1;3}
n-2 | -1 | 1 | -3 | 3 |
n | 1 | 3 | -1 | 5 |
chọn | chọn | chọn | chọn |
d)3n+2 \(⋮\)n-1
=>3(n-1)+5 \(⋮\)n-1
Vì 3(n-1)\(⋮\)n-1 mà 3(n-1)+5\(⋮\)n-1
=>5\(⋮\)n-1
=>n-1\(\in\)Ư{5}
=>n-1\(\in\){-5;-1;1;5}
n-1 | -5 | -1 | 1 | 5 |
n | -4 | 0 | 2 | 6 |
chọn | chọn | chọn | chọn |
e)3-n:2n+1
=> 2(3-n)\(⋮\)2n+1
=>6-2n\(⋮\)2n+1
=>7-(2n+1)\(⋮\)2n+1
Vì -(2n+1)\(⋮\)2n+1 mà 7 -(2n+1) \(⋮\)2n+1
=>2n+1 \(\in\)Ư{7}
=>2n+1\(\in\){-7;-1;1;7}
2n+1 | -7 | -1 | 1 | 7 |
n | -4 | -1 | 0 | 3 |
chọn | chọn | chọn | chọn |
B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)
=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)
Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)
<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}
Lập bảng:
2n + 3 | 1 | -1 | 17 | -17 |
n | -1 | -2 | 7 | -10 |
Vậy ....
Bài 2:
Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)
\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)
=> 42n-7-42n+6 chia hết cho d
=> -1 chia hết cho d
mà d thuộc N* => d=1
=> ƯCLN (7n-1; 6n-1)=1
=> đpcm
a) n + 2 \(⋮\)n - 1
Ta có : n + 2 = (n - 1) + 3
Do n - 1 \(⋮\)n - 1
Để (n - 1) + 3 \(⋮\)n - 1 thì 3 \(⋮\)n - 1 => n - 1 \(\in\)Ư(3) = { \(\pm1;\pm3\)}
Với n - 1 = 1 => n = 2
n - 1 = -1 => n = 0
n - 1 = 3 => n = 4
n - 1 = -3 => n = -2
Vậy n = {2; 0; 4; -2} thì n + 2 \(⋮\)n - 1
a, Ta có:
\(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)
\(=9^n.3-2^n.3+2^n.7=3\left(9^n-2^n\right)+2^n.7\)
Ta lại có:
\(9^n-2^n⋮9-2=7;2n.7⋮7\)
\(\Rightarrow3^{2n+1}+2^{n+2}⋮7\left(dpcm\right)\)
a) ta có: n+2 chia hết cho n-1
=> n-1+3 chia hết cho cho n-1
mà n-1 chia hết cho n-1
=> 3 chia hết cho n-1
=>n-1 thuộc Ư(3)={1;-1;3;-3}
rùi bn thay giá trị của n-1 vào để tìm n nhé
b) ta có: n-7 chia hết cho 2n+3
=> 2.(n-7) chia hết cho 2n+3
=> 2n - 14 chia hết cho 2n+3
=> 2n + 3 - 17 chia hết cho 2n+3
mà 2n+3 chia hết cho 2n+3
=> 17 chia hết cho 2n+3
=> 2n+3 thuộc Ư(17)={1;-1;17;-17}
...
c) ta có: n^2 - 2 chia hết cho n+3
=> n^2 -9 + 7chia hết cho n+3
=> (n+3).(n- 3) + 7 chia hết cho n+3
mà (n+3).(n-3) chia hết cho n+3
=> 7 chia hết cho n+3
=>...