K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2015

Gọi 2 ps đó là a/b và c/d (ƯCLN (a,b) = 1; ƯCLN (c;d) = 1)

Ta có;

\(\frac{a}{b}+\frac{c}{d}=m\) (m thuộc Z)

=> \(\frac{ad+bc}{bd}=m\)

=> ad + bc = mbd (10

Từ (1) => ad + bc chia hết cho b 

Mà bc chia hết cho b 

=> ad chia hết cho b

Mà (a,b) = 1

=> d chia hết cho b (2)

Từ (1) => ad + bc chia hết cho d 

Mà ad chia hết cho d 

=> bc chia hết cho d

Mà (c,d) = 1

=> b chia hết cho d (3)

Từ (2) và (3) =>bh = d hoặc b = -d (đpcm)

2 tháng 9 2015

Từ hằng đẳng thức \(x^n-1=\left(x-1\right)\left(x^{n-1}+x^{n-2}+\cdots+1\right)\to x^n-1\vdots x-1\).

Ta có   \(x^{3n+1}+x^{2n}+1=x\left(x^{3n}-1\right)+\left(x^2+x+1\right)+\left(x^{2n}-x^2\right)\) . Từ trên ta suy ra \(x^{3n}-1\) chia hết cho đa thức \(x^3-1,\) do đó  \(x^{3n}-1\) chia hết cho đa thức \(x^2+x+1.\) Vậy \(x^{3n+1}+x^{2n}+1\) chia hết cho đa thức \(x^2+x+1\)  khi và chỉ khi \(x^{2n}-x^2\) chia hết cho đa thức \(x^2+x+1.\)

Ta có \(x^{2n}-x^2=x^2\left(x^{2n-2}-1\right)\). Ta viết   \(2n-2=3k+r,0\le r\le2.\)

Khi đó \(x^{2n-2}-1=x^{3k+r}-1=x^r\left(x^{3k}-1\right)+\left(x^r-1\right)\), thành thử \(x^r-1\vdots x^2+x+1\to r=0.\) 

Vậy \(2n-2\vdots3\to n-1\vdots3\), hay  \(n=3k+1,\)  với \(k\) là số tự nhiên.

Đáp số: \(n=3k+1,\)  với \(k\) là số tự nhiên tùy ý.

DD
26 tháng 11 2020

\(P=n^3+4n^2-20n-48=\left(n+2\right)\left(n-4\right)\left(n+6\right)\)

Với \(n=4\Rightarrow P=0⋮125\)(thỏa)

Với \(n< 4\)thử từng giá trị đều không thỏa. 

Vậy số \(n\)nhỏ nhất cần tìm là \(4\).

26 tháng 11 2020

    \(n^3+4n^2-20n-48\)

\(=n^3-4n^2+8n^2-32n+12n-48\)

\(=\left(n^3-4n^2\right)+\left(8n^2-32n\right)+\left(12n-48\right)\)

\(=n^2\left(n-4\right)+8n\left(n-4\right)+12\left(n-4\right)\)

\(=\left(n-4\right)\left(n^2+8n+12\right)\)

Nhận thấy n = 4 thì biểu thức trên bằng 0, chia hết cho 125.

Vậy số tự nhiên n nhỏ nhất là bằng 4 (thử với n = 1, 2, 3 đều không chia hết cho 125)

1 tháng 9 2017

để n^2 +2002 là số chính phương 
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0) 
=> a^2 -n^2 =2002 
=> (a-n)(a+n) =2002 
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2 
mà a-n -(a+n) =-2n chia hết cho 2 
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2 
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4 
=> vô lý 

1 tháng 9 2017

Ai giải được thì nhớ giải rõ ràng nhé! Xin cam ơn người giải được.