Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(-7n+3⋮n-1\)
\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)
\(\Rightarrow-7n+3+7n-7⋮n-1\)
\(\Rightarrow-4⋮n-1\)
\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)
b) \(4n+5⋮4-n\)
\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)
\(\Rightarrow4n+5-4n+16⋮4-n\)
\(\Rightarrow21⋮4-n\)
\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)
\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)
c) \(3n+4⋮2n+1\)
\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+8-6n-3+1⋮2n+1\)
\(\Rightarrow5⋮2n+1\)
\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)
d) \(4n+7⋮3n+1\)
\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)
\(\Rightarrow12n+21-12n-4⋮3n+1\)
\(\Rightarrow17⋮3n+1\)
\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)
\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)
a) Ta có: -7n + 3 chia hết cho n - 1
=> (-7n + 3) % (n - 1) = 0
=> -7n + 3 = k(n - 1), với k là một số nguyên
=> -7n + 3 = kn - k => (k - 7)n = k - 3
=> n = (k - 3)/(k - 7),
với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.
b) Ta có: 4n + 5 chia hết cho 4 - n
=> (4n + 5) % (4 - n) = 0
=> 4n + 5 = k(4 - n), với k là một số nguyên
=> 4n + 5 = 4k - kn
=> (4 + k)n = 4k - 5
=> n = (4k - 5)/(4 + k), với 4 + k khác 0
Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.
c) Ta có: 3n + 4 chia hết cho 2n + 1
=> (3n + 4) % (2n + 1) = 0
=> 3n + 4 = k(2n + 1), với k là một số nguyên
=> 3n + 4 = 2kn + k
=> (2k - 3)n = k - 4
=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0
Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.
d) Ta có: 4n + 7 chia hết cho 3n + 1
=> (4n + 7) % (3n + 1) = 0
=> 4n + 7 = k(3n + 1), với k là một số nguyên
=> 4n + 7 = 3kn + k
=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0
Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.
\(n^2+2n+6=n\left(n+4\right)-2\left(n+4\right)+14\) chia hết cho n +4
=> n+4 là U(14)
=>
\(4⋮2n\Rightarrow2n\inƯ\left(4\right)\)
\(Ư\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
mà 2n chẵn nên:
\(\left\{{}\begin{matrix}2n=2\Rightarrow n=1\\2n=-2\Rightarrow n=-1\\2n=4\Rightarrow n=2\\2n=-4\Rightarrow n=-2\end{matrix}\right.\)
Xét ước kiểu đó đó tương tự đi giờ khuay r
Với n = 0 => A = 1n + 2n + 3n + 4n = 4( loại )
Với n = 1 => A= 1n + 2n + 3n + 4n = 10 \(⋮\)5 ( t/m )
Với n \(\ge\)2
+) Nếu n là số chẵn => n = 2k ( k \(\in\)N)
=> A = 1 + 4k + 9k + 16k
Ta thấy : 4 chia 5 dư ( - 1 ) => 4k chia 5 dư ( -1 )k
: 9 chia 5 dư ( - 1 ) => 9k chia 5 dư ( - 1 )k
: 16 chia 5 dư 1 => 16k chia 5 dư 1
=> A chia 5 dư 1 + ( - 1 )k + ( - 1 )k + 1
Nếu k chẵn => A chia 5 dư 4 ( loại )
Nếu k lẻ => k = 2m + 1 ( m \(\in\)N )
=> A = 1 + 42m . 4 + 92m . 9 + 162m . 16
= 1 + 16m . 4 + 81m . 9 + 256m .16
Vì 16 ; 81 ; 256 chia 5 dư 1 => A chia 5 có số dư bằng ( 1 + 4 + 9 +16 ) cho 5 => A \(⋮\) 5
=> n = 2. ( 2m + 1 ) = 4m + 2 thì A \(⋮\)5
Nếu n lẻ => n = 2h + 1 ( h \(\in\)N
=> A = 1 + 4h . 2 + 9h . 3 + 16h . 4
=> A chia 5 dư 1 +( -1)h .2 + (-1)h . 3 + 4
Khi h lẻ để A \(⋮\)5 => n = 2. ( 2.i + 1 ) + 1 = 4.i + 3 ( i \(\in\)N )
10³ + 2¹⁵
= 1000 + 32768
= 33768
Mà 33768 : 33 = 1023 (dư 9)
Em xem lại đề
= 6^(2n+1) + 5^(n+2)
=36^n×6+5^n×25
=36^n×6+5^n(31-6)
=36^n×6+5^n×31-5^n×6
=6(36^n-5^n)+5^n×31
=6.31(36^(n-1)+...+5^(n-1))+5^n×31
=[6(36^(n-1)+...+5^(n-1))+5^n] ×31
=> 6^(2n+1) + 5^(n+2) chia hết cho 31
Bài 1 :
Ta có :
\(n^{200}< 5^{300}\)
\(\Leftrightarrow\)\(\left(n^2\right)^{100}< \left(5^3\right)^{100}\)
\(\Leftrightarrow\)\(\left(n^2\right)^{100}< 125^{100}\)
\(\Leftrightarrow\)\(n^2< 125\)
Vì n lớn nhất nên \(n=11\)
Vậy \(n=11\)
Chúc bạn học tốt ~
Ta có \(2n-2⋮n-5\)
\(\Leftrightarrow2n-10+8⋮n-5\)
\(\Leftrightarrow2\left(n-5\right)+8⋮n-5\)
Vì \(2\left(n-5\right)⋮n-5\)=> \(8⋮n-5\)=> \(n-5\inƯ\left(8\right)\)
Ta có bảng :
Vậy \(n\in\left\{6;4;7;3;9;1;13;-3\right\}\)