Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n + 11 chia hết cho n +2
n + 11 chia hết cho n + 2
Ta luôn có n+ 2 chia hết cho n+ 2
=> ( n+ 11) -( n+ 2) \(⋮\) (n +2)
=> ( n-n )+( 11- 2) \(⋮\) (n+ 2)
=> 9 chia hết cho (n+ 2)
=> Ta có bảng sau:
n+ 2 | -1 | -3 | -9 | 1 | 3 | 9 |
n | -3 | -5 | -11 | -1 | 1 | 8 |
Vì n thuộc N => n \(\in\) { 1; 8}
b) 2n - 4 chia hết cho n- 1
Ta có: (n -1 ) luôn chia hết cho (n- 1)
=> 2( n-1)\(⋮\) (n-1)
=>(2n- 2) chia hêt cho (n- 1)
=> (2n-4 )- (2n-2) chia hết cho (n-1 )
=> -2 chia hết cho ( n-1)
=> Ta có bảng sau:
n-1 | -1 | 1 | -2 | 2 |
n | 0 | 2 | -1 | 3 |
Vì n thuộc N nên n thuộc {0; 2; 3}
Ta có công thức : 1 + 2 + 3 + .. + n = n(n + 1)/2
Từ đó suy ra : n(n + 1)/2 = 1275
<=> n^2 + n = 2550
<=> n^2 + n - 2550 = 0
<=> (n + 51)(n - 50) = 0
<=> n = 50 hoặc n = -51
Vì n thuộc N nên n = 50
Vậy số n cần tìm là n = 50
a, n2 + 2n + 4 chia hết cho n+1
=> n(n+1)+n+4 chia hết cho n+1
=> n(n+1)+n+1+3 chia hết cho n+1
=> (n+1).(n+1)+3 chia hết cho n+1
Vì (n+1)(n+1) chia hết cho n+1
=> 3 chia hết cho n+1
=> n+1 thuộc Ư(3)
=> n+1 thuộc {1; -1; -3; 3}
Mà n thuộc N
=> n thuộc {0; 2}
b, 2n2 + 10n + 20 chia hết cho 2n+3
n(2n+3)+7n+20 chia hết cho 2n+3
Vì n(2n+3) chia hết cho 2n+3
=> 7n+20 chia hết cho 2n+3
=> 14n+40 chia hết cho 2n+3
=> 14n+21+19 chia hết cho 2n+3
=> 7.(2n+3)+19 chia hết cho 2n+3
Vì 7.(2n+3) chia hết cho 2n+3
=> 19 chia hết cho 2n+3
=> 2n+3 thuộc Ư(19)
=> 2n+3 thuộc {1; -1; 19; -19}
=> 2n thuộc {-2; -4; 16; -22}
Mà n thuộc N
=> n = 8
a) 2n-6+7 chia het n- 3
=> 7 chia het n-3
n-3={+1-+-7}
n={-4,2,4,10} loai -4 di
b) n^2+3 chia (n+1)
n^2+n-n-1+4 chia n+1
n+ 1={+-1,+-2,+-4}
n={-5,-3,-2,0,1,3} loai -5,-3,-2, di
n={013)
a : 2n + 1 ⋮ n - 3 <=> 2n - 6 + 7 ⋮ n + 3 <=> 2( n - 3 ) + 7 ⋮ n - 3
=> 7 ⋮ n - 3 => n - 3 thuộc ước của 7 => U(7) = { 1 ; 7 }
=> n - 3 = { 1 ; 7 }
=> n = { 4 ; 11 }
b ) n2 + 3 ⋮ n + 1 <=> n2 - 1 + 4 ⋮ n + 1 => ( n - 1 ) ( n + 1 ) + 4 ⋮ n + 1
=> 4 ⋮ n + 1 <=> n + 1 thuộc ước của 4 => Ư(4) = { 1 ; 2 ; 4 }
=> n + 1 = { 1 ; 2 ; 4 }
=> n = { 0 ; 1 ; 3 }
a) 2n+1 chia hết cho n-3=>2n-6+7 chia hết cho n-3=>7 chia hết cho n-3=>n-3 thuộc Ư(7) từ đó tính tiếp
1 . goi UCLN ( 2n + 1,6n + 5 ) la d
=> 2n + 1 chia hết cho d (1)
6n + 5 chia hết cho d (2)
từ (1)=> 6 x ( 2n + 1 ) = 12n + 6 chia hết cho d (3)
từ (2) => 2 x ( 6n + 5 ) = 12n + 10 chia hết cho d (4)
Tu (3) va (4) => ( 12n + 10 ) - (12n + 6 ) chia het cho d
hay 4 chia hết cho d=> d thuộc { 1,2,4}
Mà d là lớn nhất => d = 4
2). 2x + 11 chia hết cho x + 3
(2x + 6 ) + 5 chia het cho x + 3
2 x ( x + 3 ) + 5 chia hết cho x + 3 (1)
Ma 2 x ( x + 3 ) chia het cho x + 3 (2)
Từ (1) và (2) => 5 chia hết cho x + 3
=> X + 3 thước U của 5 hay x + 3 thuộc { 1,5}
x thuộc { -2,2}
Mà x thuộc N => x = 2
Để n + 3 / n - 2 thuộc Z thì n + 3 chia hết n - 2
<=> n - 2 + 5 chia hết n - 2
=> 5 chia hết n - 2
=> n - 2 thuộc Ư(5) = {-1;1;-5;5}
=> n = {1;3;-3;7}
1+2+3+...+n=1275
Tổng của dãy là:(n+1).n :2=1275
=>(n+1).n=1275x2=2550
=>n.(n+1)=2550=50.51
=>n=51
đáp án của mik là n=51