K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có f(x)=0f(x)=0
x2−5x+4=0⇔x2−5x+4=0
x2−4xx+4=0⇔x2−4x−x+4=0
x(x−4)−(x−4)=0⇔x(x−4)−(x−4)=0
⇔(x−1)(x−4)=0⇔(x−1)(x−4)=0
x=1⇔x=1 hoặc x=4x=4
Vậy: . . .
b) f(x) = 2x2x2 + 3x + 1
Ta có f(x)=0f(x)=0
⇔2x2+3x+1=0⇔2x2+3x+1=0
⇔2x2+2x+x+1=0⇔2x2+2x+x+1=0
⇔2x(x+1)+(x+1)=0⇔2x(x+1)+(x+1)=0
⇔(x+1)(2x+1)=0⇔(x+1)(2x+1)=0
x=−1⇔x=−1 hoặc x=−12x=−12
Vậy: . . .

30 tháng 4 2019

a, Để \(x\) là nghiệm của \(f\left(x\right)\)thì: 

\(x^2-5x+4=0\)

\(\Leftrightarrow x^2-x-\left(4x+4\right)=0\)

\(\Leftrightarrow x\left(x-1\right)+4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-4\end{cases}}}\)

Vậy \(x=1,x=-4\)là hai nghiệm của \(f\left(x\right)\)

b, Để \(x\)là nghiệm của \(f\left(x\right)\)thì:

\(2x^2+3x+1=0\)

\(\Leftrightarrow2x^2+2x+x+1=0\)

\(\Leftrightarrow2x\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0-1\\2x=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x=\frac{-1}{2}\end{cases}}}\)

Vậy \(x=-1,x=\frac{-1}{2}\)là nghiệm của \(f\left(x\right)\)

4 tháng 6 2018

h(x)=5x+1

nghiệm_của_đa_thức_h(x)_là_-1/5

1 tháng 5 2017

a)h(x)=f(x)-g(x)

        =(2x3 +3x2 -2x +3)-(2x3 +3x2 -7x +2)

        =2x3 + 3x2 - 2x +3 - 2x3 -3x2 + 7x -2

        =5x+1

b)h(x)=5x+1=0

=>5x=-1

    x=\(\frac{-1}{5}\)

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 1:
1. 

$6x^3-2x^2=0$

$2x^2(3x-1)=0$

$\Rightarrow 2x^2=0$ hoặc $3x-1=0$

$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức

2.

$|3x+7|\geq 0$

$|2x^2-2|\geq 0$

Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$

$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý) 

Vậy đa thức vô nghiệm.

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 2:

1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$

Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$

Do đó đa thức vô nghiệm

2.

$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$

$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$

Vậy đa thức khác 0 với mọi $x$

Do đó đa thức không có nghiệm.

4 tháng 4 2021

câu hỏi bạn ơi

 

5 tháng 4 2021

a)

\(f\left(x\right)=x^4-5x^2-x^3+7x^2+3x-8=x^4-x^3+2x^2+3x-8\\ g\left(x\right)=x^3-3x^2-x^4-3x-17+2x^2=-x^4+x^3-x^2-3x-17\\ f\left(x\right)+g\left(x\right)=x^2-25\)

b) 

\(f\left(x\right)+g\left(x\right)=0\\ \Leftrightarrow x^2-25=0\Leftrightarrow x=\pm5\)

30 tháng 7 2021

a, \(f\left(x\right)=9-3x^5+7x-2x^3+3x^5+x^2-3x-7x^4=-7x^4-2x^3+x^2+4x+9\)

\(g\left(x\right)=x^4+1+2x^2+7x^4+2x^3-3x-2x^2-x=8x^4+2x^3-4x+1\)

b, Ta có : \(h\left(x\right)=f\left(x\right)+g\left(x\right)=-7x^4-2x^3+x^2+4x+9+8x^4+2x^3-4x+1\)

\(=x^4+x^2+10\)

c, Ta có : \(x^4\ge0\forall x;x^2\ge0\forall x;10>0\Rightarrow x^4+x^2+10>0\)

Vậy phương trình ko có nghiệm ( đpcm ) 

30 tháng 7 2021

Kết luận cuối là Vậy đa thức h(x) ko có nghiệm ( đpcm ) nhé 

15 tháng 4 2018

a/ Khi f (x) = 0

=> \(x^2-5x+4=0\)

=> \(x^2-x-4x+4=0\)

=> \(\left(x^2-x\right)-\left(4x-4\right)=0\)

=> \(x\left(x-1\right)-4\left(x-1\right)=0\)

=> \(\left(x-1\right)\left(x-4\right)=0\)

=> \(\orbr{\begin{cases}x-1=0\\x-4=0\end{cases}}\)=> \(\orbr{\begin{cases}x=1\\x=4\end{cases}}\)

Vậy f (x) có 2 nghiệm: x1 = 1; x2 = 4.

b/ Khi f (x) = 0

=> \(2x^2+3x+1=0\)

=> \(2x^2+2x+x+1=0\)

=> \(\left(2x^2+2x\right)+\left(x+1\right)=0\)

=> \(2x\left(x+1\right)+\left(x+1\right)=0\)

=> \(\left(x+1\right)\left(2x+1\right)=0\)

=> \(\orbr{\begin{cases}x+1=0\\2x+1=0\end{cases}}\)=> \(\orbr{\begin{cases}x=-1\\x=\frac{-1}{2}\end{cases}}\)

Vậy f (x) có 2 nghiệm: x1 = -1; x2 = \(\frac{-1}{2}\)

15 tháng 4 2018

a) Cho F(x) =0

=> x^2 -5x +4 =0

x^2 -x - 4x +4 =0

x.( x-1) - 4.( x-1) =0

( x-1).( x-4) =0

=> x-1= 0                   => x-4=0

x=1                                 x=4

KL: x=1;x=4 là nghiệm của đa thức F(x)

b) Cho F(x) =0

=> 2x^2 +3x +1 =0

   2x^2 + 2x +( x+1) =0

2x.( x+1) +( x+1) =0

(x+1) .( 2x+1) =0

=> x+1 =0                 => 2x+1 =0

x= -1                              2x =-1

                                           x = -1/2

KL: x= -1; x= -1/2 là nghiệm của đa thức F(x)

Chúc bn học tốt !!!!!!

28 tháng 4 2017

a) Tìm h(x) = f(x) - g(x)
f(x) - g(x) = (-2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2) - (2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2)
= -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2 - 2x2 + x3 - 3x - 3x3 - x2 + x + 9x - 2
= (-2x2 + x2 + 4x2 - 2x2 - x2) + (-3x3 + 5x3 + x3 - 3x3) + (-5x - x + 4x - 3x + x + 9x) + (3 - 2)
= 5x + 1
Vậy h(x) = 5x + 1

b) Tìm nghiệm của đa thức h(x)
Cho h(x) = 0
\(\Leftrightarrow\) 5x + 1 = 0
5x = 0 + 1
5x = 1
x = \(\dfrac{1}{5}\)
Vậy x = \(\dfrac{1}{5}\) là nghiệm của đa thức h(x).

31 tháng 5 2020

Sai rồi bạn!!!Nghiệm là x=\(\frac{1}{5}\)