K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2021

Mn giúp mik với nhé. Mình đag cần gấp.

 

16 tháng 9 2021

Còn ai onl ko giúp mình với nhé 

 

26 tháng 2 2022

ko có ảnh bn ơi

26 tháng 2 2022

Đề bài là gì zạ? lolang

Bài 2: 

Ta có: \(3n^3+10n^2-5⋮3n+1\)

\(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow3n\in\left\{0;-3;3\right\}\)

hay \(n\in\left\{0;-1;1\right\}\)

1: Xét tứ giác BHCK có 

CH//BK

BH//CK

Do đó: BHCK là hình bình hành

Suy ra: Hai đường chéo BC và HK cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HK

2: Gọi giao điểm của IH và BC là O

Suy ra: IH\(\perp\)BC tại O và O là trung điểm của IH

Xét ΔHIK có

O là trung điểm của HI

M là trung điểm của HK

Do đó: OM là đường trung bình của ΔHIK

Suy ra: OM//IK 

hay BC//IK

mà BC\(\perp\)IH

nên IH\(\perp\)IK

Xét ΔHOC vuông tại O và ΔIOC vuông tại O có

OC chung

HO=IO

Do đó: ΔHOC=ΔIOC

Suy ra: CH=CI

mà CH=BK

nên CI=BK

Xét tứ giác BCKI có IK//BC

nên BCKI là hình thang

mà CI=BK

nên BCKI là hình thang cân

15 tháng 8 2016

  Gọi O là giao điểm hai đường chéo, MQ cắt AC ở H và MN cắt BD ở I. Ta có H và I là trung điểm OA và OB ta có:
Dien h AOM = BOM = ½ AOB
Dien h OHM = HAM = ½ AOM
Dien h OMI = BMI = ½ OMB
=> Dien h OHMI = ½ OAB
Tuong tu các cặp tam giác khác rồi cộng lại

20 tháng 3 2020

a

Áp dụng định lý Thales ta có:

\(\frac{BP}{AB}=\frac{BM}{BC};\frac{CN}{AC}=\frac{CM}{BC}\Rightarrow\frac{PB}{AB}+\frac{CN}{AC}=\frac{BM}{BC}+\frac{CM}{BC}=1\)

b

Gọi \(S_{BPM}=a^2;S_{CMN}=b^2;S_{ABC}=S^2\)

PM//AC nên \(\Delta\)BPM ~ \(\Delta\)BAC =>\(\frac{S_{BPM}}{S_{ABC}}=\frac{a^2}{S^2}=\frac{BM^2}{BC^2}\Rightarrow\frac{BM}{BC}=\frac{a}{S}\)

MN//AB nên \(\Delta\)CMN ~ \(\Delta\)CBA => \(\frac{S_{CMN}}{S_{ABC}}=\frac{b^2}{S^2}=\frac{CM^2}{BC^2}\Rightarrow\frac{CM}{BC}=\frac{b}{S}\)

\(\Rightarrow\frac{a}{S}+\frac{b}{S}=1\Rightarrow a+b=S\Rightarrow S^2=\left(a+b\right)^2\)

\(\Rightarrow S_{AMNP}=\left(a+b\right)^2-a^2-b^2=2ab\le\frac{\left(a+b\right)^2}{2}=\frac{S^2}{2}\) ( không đổi )

Vậy Max \(S_{AMNP}=\frac{S_{ABC}}{2}\) khi M là trung điểm của BC.

21 tháng 3 2020

Cảm ơn nha