\(D=\dfrac{3x^2+16x+24}{\left(x+2\right)^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

2.

a) Vì \(\left|2x+1\right|\ge0\forall x\in R\\ \Rightarrow3\left|2x+1\right|\ge0\forall x\in R\\ \Rightarrow3\left|2x+1\right|-4\ge-4\forall x\in R\\ \Rightarrow A\ge-4\forall x\in R\)

Vậy GTNN của A là -4 đạt được khi \(x=-\dfrac{1}{2}\)

5 tháng 11 2017

Mai mk phải nộp rồi ! Các bn ơi giúp mk với! Help Me ! Thank you !

2 tháng 5 2018

Taco:-3x2>hoặc=0

         5x>hoặc=0

=)-3x2​-5x+7luôn >hoặc =7

Vậymax của đa thức đó là 7

a: =>|3x-5|=|x+2|

=>3x-5=x+2 hoặc 3x-5=-x-2

=>2x=7 hoặc 4x=3

=>x=7/2 hoặc x=3/4

b: \(\Leftrightarrow\left\{{}\begin{matrix}3x-5=0\\x+2=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

c: \(\Leftrightarrow\left|3x-5\right|=x-2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=2\\\left(3x-5-x+2\right)\left(3x-5+x-2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=2\\\left(2x-3\right)\left(4x-7\right)=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

d: \(\dfrac{11}{2}\le\left|x\right|< \dfrac{17}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{11}{2}< =x< \dfrac{17}{2}\\-\dfrac{17}{2}< x< =-\dfrac{11}{2}\end{matrix}\right.\)

1 tháng 8 2020

tôi cũng nghĩ là dùng Phương pháp dồn biến tìm MAX , MIN

1 tháng 8 2020

\(P=\left(4x^2+3y\right)\left(4y^2+3x\right)+25xy\)

\(=16x^2y^2+12\left(x+y\right)\left(x^2-xy+y^2\right)+34xy\)

\(=16x^2y^2+12\left[\left(x+y\right)^2-2xy\right]+22xy\)

\(=16x^2y^2-2xy+12\)

Đặt  \(t=xy\Rightarrow B=16t^2-2t+12=16\left(t-\frac{1}{16}\right)^2+\frac{191}{16}\ge\frac{191}{16}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=1\\xy=\frac{1}{16}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{2+\sqrt{3}}{4}\\y=\frac{2-\sqrt{3}}{4}\end{cases}}\) hoặc  \(\hept{\begin{cases}x=\frac{2-\sqrt{3}}{4}\\y=\frac{2+\sqrt{3}}{4}\end{cases}}\)

Vậy  \(B_{min}=\frac{191}{16}\Leftrightarrow\left(x;y\right)=\left(\frac{2+\sqrt{3}}{4};\frac{2-\sqrt{3}}{4}\right);\left(\frac{2-\sqrt{3}}{4};\frac{2+\sqrt{3}}{4}\right)\)

27 tháng 11 2022

b: =>(3x-1)(3x+1)(2x+3)=0

hay \(x\in\left\{\dfrac{1}{3};-\dfrac{1}{3};-\dfrac{3}{2}\right\}\)

c: \(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|=\dfrac{5}{6}+\dfrac{3}{4}=\dfrac{19}{12}\)

=>2x-1/3=19/12 hoặc 2x-1/3=-19/12

=>2x=23/12 hoặc 2x=-15/12=-5/4

=>x=23/24 hoặc x=-5/8

d: \(\Leftrightarrow-\dfrac{5}{6}\cdot x+\dfrac{3}{4}=-\dfrac{3}{4}\)

=>-5/6x=-3/2

=>x=3/2:5/6=3/2*6/5=18/10=9/5

e: =>2/5x-1/2=3/4 hoặc 2/5x-1/2=-3/4

=>2/5x=5/4 hoặc 2/5x=-1/4

=>x=5/4:2/5=25/8 hoặc x=-1/4:2/5=-1/4*5/2=-5/8

f: =>14x-21=9x+6

=>5x=27

=>x=27/5

h: =>(2/3)^2x+1=(2/3)^27

=>2x+1=27

=>x=13

i: =>5^3x*(2+5^2)=3375

=>5^3x=125

=>3x=3

=>x=1

28 tháng 10 2018

a) \(\left[\left(\dfrac{3}{5}\right)^2-\left(\dfrac{2}{5}\right)^2\right]\cdot X=\left(\dfrac{1}{5}\right)^3\)

\(\left(\dfrac{3}{5}-\dfrac{2}{5}\right)\left(\dfrac{3}{5}+\dfrac{2}{5}\right)\cdot X=\dfrac{1}{125}\)

\(\dfrac{1}{5}\cdot1\cdot X=\dfrac{1}{125}\)

\(X=\dfrac{1}{125}:\dfrac{1}{5}=\dfrac{1}{25}\)

b) \(1\dfrac{2}{5}\cdot x+\dfrac{3}{7}=\dfrac{-4}{5}\)

\(1\dfrac{2}{5}\cdot x=\dfrac{-4}{5}-\dfrac{3}{7}\)

\(1\dfrac{2}{5}\cdot x=-\dfrac{43}{35}\)

\(x=-\dfrac{43}{35}:1\dfrac{2}{5}=-\dfrac{43}{49}\)

c) \(\left(3x-2\right)^2=9\)

*Nếu \(9=3^2\) thì:

\(3x-2=3\)

\(3x=5\Rightarrow x=\dfrac{5}{3}\)

*Nếu \(9=\left(-3\right)^2\) thì

\(3x-2=-3\)

\(3x=-1\Rightarrow x=-\dfrac{1}{3}\)

d) \(\left|x+\dfrac{1}{3}\right|-4=-1\)

\(\left|x+\dfrac{1}{3}\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=3\\x+\dfrac{1}{3}=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=-\dfrac{10}{3}\end{matrix}\right.\)

Chúc bạn học giỏi.

28 tháng 10 2018

a)\(\dfrac{3^2-2^2}{5^2}.x=\dfrac{1}{5^3}\)

\(\Leftrightarrow\dfrac{5}{5^2}.x=\dfrac{1}{5^3}\)

\(\Leftrightarrow\dfrac{1}{5}.x=\dfrac{1}{5^3}\)

\(\Leftrightarrow x=\dfrac{1}{25}\)

b)\(\dfrac{7}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)

\(\Leftrightarrow\dfrac{7}{5}x=-\dfrac{43}{35}\)

\(\Leftrightarrow x=\dfrac{-43}{49}\)

c)\(9x^2-12x+4=9\)

\(\Leftrightarrow9x^2-12x-5=0\)

\(\Leftrightarrow9x^2-15x+3x-5=0\)

\(\Leftrightarrow3x\left(3x-5\right)+3x-5=0\)

\(\Leftrightarrow\left(3x-5\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

d)\(\left|x+\dfrac{1}{3}\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=3\\x+\dfrac{1}{3}=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=-\dfrac{10}{3}\end{matrix}\right.\)

11 tháng 9 2019

a) Đầu bài có đúng ko ?

11 tháng 9 2019

b) \(B=|x-1|+|x-2|\)

\(=|x-1|+|2-x|\ge|x-1+2-x|\)

Hay \(B\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)\left(2-x\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1< 0\\2-x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le2\end{cases}}\)hoặc \(\hept{\begin{cases}x< 1\\x>2\end{cases}\left(loai\right)}\)

\(\Leftrightarrow1\le x\le2\)

Vậy \(B_{min}=1\Leftrightarrow1\le x\le2\)