Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(\text{VT}=a-\frac{ab(a+b)}{a^2+ab+b^2}+b-\frac{bc(b+c)}{b^2+bc+c^2}+c-\frac{ca(c+a)}{c^2+ca+a^2}\)
\(=a+b+c-\left(\frac{ab(a+b)}{a^2+ab+b^2}+\frac{bc(b+c)}{b^2+bc+c^2}+\frac{ca(c+a)}{c^2+ca+a^2}\right)\)
Áp dụng BĐT AM-GM:
\(\text{VT}\geq a+b+c-\left(\frac{ab(a+b)}{2ab+ab}+\frac{bc(b+c)}{2bc+bc}+\frac{ca(c+a)}{2ac+ac}\right)\)
\(\Leftrightarrow \text{VT}\geq a+b+c-\frac{2}{3}(a+b+c)=\frac{a+b+c}{3}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c\)
a) \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
(Luôn đúng)
Vậy ta có đpcm.
Đẳng thức khi \(a=b=c\)
b) \(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)
(Luôn đúng)
Vậy ta có đpcm
Đẳng thức khi \(a=b=1\)
Các bài tiếp theo tương tự :v
g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)
i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)
Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)
Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm
j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm
ta có P2 = (\(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\))2
= \(\dfrac{\left(bc\right)^2}{a^2}+\dfrac{\left(ac\right)^2}{b^2}+\dfrac{\left(ab\right)^2}{c^2}+2.\dfrac{bc}{a}.\dfrac{ac}{b}+2.\dfrac{ac}{b}.\dfrac{ab}{c}+2.\dfrac{bc}{a}.\dfrac{ab}{c}\)
= \(\dfrac{\left(bc\right)^2}{a^2}+\dfrac{\left(ac\right)^2}{b^2}+\dfrac{\left(ab\right)^2}{c^2}+2.\left(a^2+b^2+c^2\right)\)
=\(\dfrac{\left(bc\right)^2}{a^2}+\dfrac{\left(ac\right)^2}{b^2}+\dfrac{\left(ab\right)^2}{c^2}+2.1\)
nhận thấy \(\dfrac{\left(bc\right)^2}{a^2}+\dfrac{\left(ac\right)^2}{b^2}+\dfrac{\left(ab\right)^2}{c^2}\ge0\)
==> P2 \(\ge2\) ==> p \(\ge\) \(\sqrt{2}\)
dấu ''='' xảy ra ............
vậy.............
p/s : mk lm bừa
a)Bunhia:
\(\left(1+2\right)\left(b^2+2a^2\right)\ge\left(1.b+\sqrt{2}.\sqrt{2}a\right)^2=\left(b+2a\right)^2\)
b)\(ab+bc+ca=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng bđt câu a
=>VT\(\ge\)\(\dfrac{b+2a}{\sqrt{3}ab}+\dfrac{c+2b}{\sqrt{3}bc}+\dfrac{a+2c}{\sqrt{3}ca}\)
\(\Leftrightarrow VT\ge\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{b}+\dfrac{2}{c}+\dfrac{1}{c}+\dfrac{2}{a}=3=VP\)
Tự tìm dấu "="
Nguyễn Việt LâmMashiro ShiinaBNguyễn Thanh HằngonkingCẩm MịcFa CTRẦN MINH HOÀNGhâu DehQuân Tạ MinhTrương Thị Hải Anh
2)a)\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)
c)\(a^3+b^3-a^2b-ab^2=a^2\left(a-b\right)-b^2\left(a-b\right)=\left(a-b\right)^2\left(a+b\right)\ge0\\ \Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)
b)\(a^3+b^3\ge a^2b+ab^2\Leftrightarrow4a^3+4b^3\ge a^3+b^3+3a^b+3ab^2\\ \Leftrightarrow4\left(a^3+b^3\right)\ge\left(a+b\right)^3\Leftrightarrow\dfrac{a^3+b^3}{2}\ge\left(\dfrac{a+b}{2}\right)^3\)
a: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
hay AE/AC=AF/AB
Xét ΔAEF vuông tại A và ΔACB vuông tại A có
AE/AC=AF/AB
Do đó: ΔAEF đồng dạng với ΔACB
c: \(\dfrac{BE}{CF}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)