Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu A thiếu đề
B=\(x^2-2x+2017=\left(x-1\right)^2+2016>=2016\)
Min B=2016 khi x-1=0<=>x=1
+)D=\(-2x^2+4x+2017=-2\left(x^2-2x+1\right)+2019=-2\left(x-1\right)^2+2019< =2019\)
=>Max D=2019, dấu '=' xảy ra khi x-1=0<=>x=1
a: \(M=-2\left(x^2-\dfrac{3}{2}x-\dfrac{1}{2}\right)\)
\(=-2\left(x^2-2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{17}{16}\right)\)
\(=-2\left(x-\dfrac{3}{4}\right)^2+\dfrac{17}{8}\le\dfrac{17}{8}\forall x\)
Dấu '=' xảy ra khi x=3/4
b: Tham khảo:
Đặt A=\(-x^2+2x\left(y+1\right)-\left(y-1\right)^2-3y^2+8y+6\)
=\(-\left(x-y+1\right)^2-3\left(y^2-\frac{8}{3}y+\frac{16}{9}\right)+\frac{34}{3}\)
=\(-\left(x-y+1\right)^2-3\left(y-\frac{4}{3}\right)^2+\frac{34}{3}\le\frac{34}{3}\)
dấu = xảy ra khi \(\left\{\begin{matrix}x-y+1=0\\y-\frac{4}{3}=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=\frac{1}{3}\\y=\frac{4}{3}\end{matrix}\right.\)
Vậy max A=\(\frac{34}{3}\)khi và chỉ khi x=1/3, y=4/3
\(C=-\left(x^2-2xy+4y^2-2x-10y+8\right)\)
\(=-\left[\left(x^2-2xy+y^2\right)-2\left(x-y\right)+1+\left(3y^2-9y+3\right)+4\right]\)
\(=-\left[\left(x-y\right)^2-2\left(x-y\right)+1+3\left(y-1\right)^2+4\right]\)
\(=-\left[\left(x-y-1\right)^2+3\left(y-1\right)^2+4\right]\)
\(=-\left[\left(x-y-1\right)^2+3\left(y-1\right)^2\right]-4\le-4\)
GTLN là -4 tại x=2;y=1
B = 2\(x^2\) - 4\(x\) - 8
B = 2(\(x^2\) - 2\(x\) + 4) - 16
B = 2(\(x-2\))2 - 16
Vì (\(x-2\))2 ≥ 0 ∀ \(x\) ⇒ 2(\(x-2\))2 ≥ 0 ∀ \(x\)
⇒ 2(\(x-2\))2 - 16 ≥ -16 ∀ \(x\)
Dấu bằng xảy ra khi (\(x-2\))2 = 0 ⇒ \(x-2=0\) ⇒ \(x=2\)
Vậy Bmin = -16 khi \(x=2\)
Tìm min của C biết:
C = \(x^2\) - 2\(xy\) + 2y2 + 2\(x\) - 10y + 17
C = (\(x^2\) - 2\(xy\) + y2) + 2(\(x\) - y) + y2 - 8y + 16 + 1
C = (\(x\) - y)2 + 2(\(x\) - y) + 1 + (y2 - 8y + 16)
C = (\(x-y+1\))2 + (y - 4)2
Vì (\(x\) - y + 1)2 ≥ 0 ∀ \(x;y\); (y - 4)2 ≥ 0 ∀ y
Dấu bằng xảy ra khi: \(\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x-y+1=0\\y=4\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x-4+1=0\\y=4\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=-1+4\\y=4\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
Vậy Cmin = 0 khi (\(x;y\)) = (3; 4)
1) a) Đặt biểu thức là A
\(A=2x^2+4y^2-4xy-4x-4y+2017\)
\(A=\left(x-2y\right)^2+x^2-4x-4y+2017\)
\(A=\left(x-2y\right)^2+2\left(x-2y\right)+x^2-6x+2017\)
\(A=\left(x-2y-1\right)^2+\left(x+3\right)^2+2008\)
Vậy: MinA=2008 khi x=-3; y=-2
3) a) \(A=\dfrac{1}{x^2+x+1}\)
\(B=x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
\(\Rightarrow B\ge\dfrac{3}{4}\Rightarrow A\ge\dfrac{4}{3}\)
Vậy MinA là \(\dfrac{4}{3}\) khi x=-0,5
\(A=-x^2+2xy-4y^2+2x+10y-8\)
\(=-x^2+2xy-y^2-3y^2+2x-2y+12y-12+4\)
\(=-\left(x^2-2xy+y^2\right)+\left(2x-2y\right)-1-\left(3y^2-12y+12\right)+5\)
\(=-\left(x-y\right)^2+2\left(x-y\right)-1-3\left(y-2\right)^2+5\)
\(=-\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]\)\(-3\left(y-2\right)^2+5\)
\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\)
\(A_{max}=5\Leftrightarrow\hept{\begin{cases}\left(x-y-1\right)^2=0\\3\left(y-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x-y-1=0\\y=2\end{cases}}\)\(\Rightarrow x-2-1=0\Leftrightarrow x=3\)
\(KL:A_{max}=5\Leftrightarrow x=3;y=2\)
bạn xem trong danh sách câu trả lời của mình ấy, mình đã trả lời nhiều bài tương tự rồi