Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ kết quả bài toán suy ngược ra thôi
Muốn giải thích thì cứ phá 2 vế ra rồi so sánh là tìm ra cách tách biểu thức
Câu 4 mình ko biết giải quyết kiểu lớp 9 (mặc dù chắc chắn là biểu thức sẽ được biến đổi như vầy)
Đó là kiểu trình bày của lớp 11 hoặc 12 để bạn tham khảo thôi
Chú ý: \(\left(a^2+2b^2+c^2\right)\left(2^2+1^2+2^2\right)\ge\left(2a+2b+2c\right)^2\)
\(\Rightarrow a^2+2b^2+c^2\ge\frac{4\left(a+b+c\right)^2}{9}\Rightarrow\sqrt{a^2+2b^2+c^2}\ge\frac{2}{3}\left(a+b+c\right)\)
Tương tự: \(\sqrt{b^2+2c^2+a^2}\ge\frac{2}{3}\left(a+b+c\right)\); \(\sqrt{c^2+2a^2+b^2}\ge\frac{2}{3}\left(a+b+c\right)\)
Thay vào ta có: \(VT\le\frac{3\left(3a+b+3b+c+3c+a\right)}{2\left(a+b+c\right)}=6\)(qed)
Đẳng thức xảy ra khi a = b = c
Is that true?
Áp dụng bđt Bunhiacopxki ta được:
\(\left(\text{Σ}_{cyc}\frac{3a+b}{\sqrt{a^2+2b^2+c^2}}\right)^2\le3\left(\text{Σ}_{cyc}\frac{\left(3a+b\right)^2}{a^2+2b^2+c^2}\right)\)
Mặt khác cũng theo bđt Bunhiacopxki dạng phân thức, ta được:
\(\frac{\left(3a+b\right)^2}{a^2+2b^2+c^2}\le\frac{9a^2}{a^2+b^2+c^2}+\frac{b^2}{b^2}=\frac{9a^2}{a^2+b^2+c^2}+1\)
Hoàn toàn tương tự, ta có:
\(\frac{\left(3b+c\right)^2}{b^2+2c^2+a^2}\le\frac{9b^2}{b^2+c^2+a^2}+1\);\(\frac{\left(3c+a\right)^2}{c^2+2a^2+b^2}\le\frac{9c^2}{c^2+a^2+b^2}+1\)
Cộng từng vế của các bđt trên, ta được:
\(\text{}\text{}\text{Σ}_{cyc}\frac{\left(3b+c\right)^2}{b^2+2c^2+a^2}\le\text{Σ}_{cyc}\frac{9b^2}{b^2+c^2+a^2}+3=9+3=12\)
Do đó \(\left(\text{Σ}_{cyc}\frac{3a+b}{\sqrt{a^2+2b^2+c^2}}\right)^2\le3\left(\text{Σ}_{cyc}\frac{\left(3a+b\right)^2}{a^2+2b^2+c^2}\right)\le3.12=36\)
Hay \(\left(\text{Σ}_{cyc}\frac{3a+b}{\sqrt{a^2+2b^2+c^2}}\right)\le6\)
Đẳng thức xảy ra khi a = b = c
ta có:
\(\left(b-c\right)^2\ge0\Leftrightarrow b^2+4bc+4c^2\le3b^2+6c^2\Leftrightarrow\left(b+2c\right)^2\le3b^2+6c^2\)
\(\Leftrightarrow\frac{\left(b+2c\right)^2}{3b^2+6c^2}\le1\Leftrightarrow\frac{b+2c}{\sqrt{3b^2+6c^2}}\le1\Leftrightarrow\frac{a\left(b+2c\right)}{\sqrt{3b^2+6c^2}}\le a\)
cmtt =>\(\frac{a\left(b+2c\right)}{\sqrt{3b^2+6c^2}}+\frac{b\left(c+2a\right)}{\sqrt{3c^2+6a^2}}+\frac{c\left(a+2b\right)}{\sqrt{3a^2+6b^2}}\le a+b+c\left(Q.E.D\right)\)
dấu = xảy ra khi a=b=c
Câu 1 : áp dụng BĐT SVAC ta có \(A\ge\frac{(a+b+c)^2}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}}=\frac{1.\sqrt{2a+2b+2c}}{\sqrt{2.}(\sqrt{b+c}+\sqrt{a+b}+\sqrt{a+c})}\)
mặt khác lại có \(\frac{\sqrt{2a+2b+2c}}{\sqrt{2}.(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})}\ge\frac{\sqrt{(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})^2}}{\sqrt{2}.\sqrt{3}.(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})}=\frac{1}{\sqrt{6}}\)theo bđt svac
\(\Rightarrow A\ge\frac{1}{\sqrt{6}}\)dấu bằng xảy ra tại a=b=c=\(\frac{1}{3}\)
\(\frac{a^4+b^4}{2}\ge ab^3+a^3b-a^2b^2\)
\(\Leftrightarrow a^4+b^4-2ab^3-2a^3b+2a^2b^2\ge0\)
\(\Leftrightarrow a^3\left(a-2b\right)-b^3\left(a-2b\right)+2a^2b^2\ge0\)
\(\Leftrightarrow\left(a-2b\right)\left(a-b\right)\left(a^2+ab+b^2\right)+2a^2b^2\ge0\left(1\right)\)
Do BĐT trên đối xứng,ko mất tính tổng quát giả sử \(a\le b\)
Khi đó \(\left(a-2b\right)\left(a-b\right)\left(a^2+2ab+b^2\right)\ge0\)
\(\Rightarrow\left(1\right)\ge0\left(true\right)\)
P/S:E ko bt chỗ giả sử có đúng ko nx:(((
\(\left(a-b\right)\left(a-2b\right)\left(a^2+ab+b^2\right)\ge0\) ạ.em viết nhầm:(((
Áp dụng BĐT Schwarz ta có:
\(\sqrt{a^2+3b^2}=\sqrt{a^2+b^2+b^2+b^2}\ge\sqrt{\frac{\left(a+b+b+b\right)^2}{4}}=\sqrt{\frac{\left(a+3b\right)^2}{4}}\)
Chứng minh tương tự ta có:
\(\sqrt{3a^2+b^2}\ge\sqrt{\frac{\left(3a+b\right)^2}{4}}\)
Như vậy ta có:
\(\frac{a+2b}{\sqrt{3a^2+b^2}+\sqrt{a^2+3b^2}+2b}\le\frac{a+2b}{\sqrt{\frac{\left(3a+b\right)^2}{4}}+\sqrt{\frac{\left(a+3b\right)^2}{4}}+2b}=\frac{a+2b}{\frac{3a+b}{2}+\frac{3b+a}{2}+2b}=\frac{a+2b}{2a+2b+2b}=\frac{a+2b}{2a+4b}=\frac{a+2b}{2\left(a+2b\right)}=\frac{1}{2}\)
Dấu \("="\) xảy ra \(\Leftrightarrow a=b\)
(Không chắc lắm ạ!)Bất đẳng thức đó ghi sao vậy?