K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

\(C=-4x^2+9x+7=-\left[\left(2x\right)^2-9x-7\right]\)

\(=-\left[\left(2x\right)^2-2.2,25x+5,0625-12,0625\right]\)

\(=-\left[\left(2x-2,25\right)^2-12,065\right]=-\left(2x-2,25\right)^2+12,0625\)

Ta có: \(\left(2x-2,25\right)^2\ge0\)\(\Leftrightarrow-\left(2x-2,25\right)^2\le0\)\(\Leftrightarrow-\left(2x-2,25\right)^2+12,0625\le12,0625\)

Vậy \(C_{max}=12,0625\)(Dấu "="\(\Leftrightarrow x=1,125\))

16 tháng 7 2019

C= -4x2 +9x+7

Giải phương trình trên máy tính rồi ấn 3 lần dấu ' = ' để tìm GTLN

KQ : Max C = \(\frac{9}{8}\)

D=-3x2-7x+12

Giải phương trình trên máy tính rồi ấn 3 lần dấu ' = ' để tìm GTLN

Max D = \(-\frac{7}{6}\)

Không có Min đâu nhé bạn

18 tháng 1 2017

\(A_{min}=8-\frac{25}{4}\) khi x=5/2

Bmin=xem lại đề đúng như đề Bmin=5 khi x=0

C=8+25-(2x+5)^2

Cmax=8+25 khi x=-5/2 

Dmax=9 khi x=0

18 tháng 1 2017

Cụ thể mức nào nhỉ tất cả dự trên HĐT \(\left(a+-b\right)^2=a^2+-2ab+b^2\)

cụ thể con A

\(A=x^2-2.\frac{5}{2}x+\left(\frac{5^2}{2^2}\right)+8-\frac{25}{4}\) đã thêm 25/4 =b vào phần đầu => trừ đi 

\(A=\left(x-\frac{5}{2}\right)^2+8-\frac{25}{4}=\left(x-\frac{5}{2}\right)^2+\frac{7}{4}\)

\(\left(x-\frac{5}{2}\right)^2\ge0\Rightarrow A\ge\frac{7}{4}\)đẳng thức khi x-5/2=0=> x=5/2

18 tháng 1 2017

A=(x-5/2)^2+8-25/4=> Amin=7/4 khi x=5/2

B --> xem lại theo đề Bmin =5 khi x=0

C =8+25-(2x+5)^2=> C max=32 khi x=-5/2

D max=9 khi x=0

24 tháng 8 2017

   4x+ 81 

Ta sẽ thêm và bớt 36x2 sau đó nhóm các hạng tử phù hợp để có dạng hằng đẳng thức:

          4x+ 81  =  4x + 36x2 + 81 – 36x2

                        = ( 2x+ 9)2 – (6x)2

                        =  (2x2 + 9 – 6x)(2x2 + 9 + 6x)

4)      x+ x4 + 1

Ta sẽ thêm và bớt x4 sau đó nhóm các hạng tử sử dụng các hằng đẳng thức để phân tích tiếp:

          x+ x4 + 1   = x8 + 2x+ 1 – x4 = (x4 + 1)2 – x4

                              = (x4 + 1 – x2)(x4 + 1 + x2)

                              =(x4 – x2 + 1)(x4 + 2x2 – x2 + 1)

                              =(x4 – x2 + 1)[(x2 + 1)2 – x2 ]

                              =( x4 – x2 + 1)(x2 + 1 + x2)(x2 + 1 – x2)

                              = (x4 – x2 + 1)(2x2 + 1).

24 tháng 9 2019

\(A=2x-x^2=-\left(x^2-2x\right)=-\left(x^2-2x+1-1\right)\)

\(=-\left[\left(x-1\right)^2-1\right]=-\left(x-1\right)^2+1\le1\)

Vậy \(A_{max}=1\Leftrightarrow x-1=0\Leftrightarrow x=1\)

\(B=x-x^2=-\left(x^2-x\right)=-\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Vậy \(B_{max}=\frac{1}{4}\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

\(C=1+7x-x^2=-\left(x^2-7x-1\right)\)

\(=-\left(x^2-7x+\frac{49}{4}-\frac{45}{4}\right)\)

\(=-\left[\left(x-\frac{7}{2}\right)^2-\frac{45}{4}\right]=-\left(x-\frac{7}{2}\right)^2+\frac{45}{4}\le\frac{45}{4}\)

Vậy \(C_{max}=\frac{45}{4}\Leftrightarrow x-\frac{7}{2}=0\Leftrightarrow x=\frac{7}{2}\)

30 tháng 9 2018

a)  

\(B=4x^2+4x+2\)

\(=4x^2+4x+1+1\)

\(=\left(2x+1\right)^2+1\)

Nhận thấy:   \(\left(2x+1\right)^2\ge0\)

=>   \(\left(2x+1\right)^2+1>0\)

hay B luôn dương

7 tháng 7 2019

a)

A=\(x^2+5x+7=x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{25}{4}+7=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

C=\(3x^2-6x+5=\left[\left(\sqrt{3}x\right)^2-2.\sqrt{3}x.\sqrt{3}+\left(\sqrt{3}\right)^2\right]-\left(\sqrt{3}\right)^2+5\ge2 \)

b)

C=\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\)

Ta có :\(\left(x-2\right)^2+1\ge1\Leftrightarrow-\left[\left(x-2\right)^2+1\right]\le\)-1

29 tháng 7 2019

\(A=x^2-6x-4=x^2-6x+9-13=\left(x-3\right)^2-13\ge-13\)

Vậy \(A_{min}=-13\Leftrightarrow x=3\)

29 tháng 7 2019

\(B=x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy \(B_{min}=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)

29 tháng 11 2017

Câu 1:

\(A=x^2-3x+9\\ =x^2-3x+\dfrac{9}{4}+\dfrac{27}{4}\\ =\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{27}{4}\\ =\left(x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\\ Do\text{ }\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\\ \Rightarrow A=\left(x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\ge0\forall x\\ \text{Dấu “=” xảy ra khi: }\\ \left(x-\dfrac{3}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{3}{2}=0\\ \Leftrightarrow x=\dfrac{3}{2}\\ Vậy\text{ }A_{\left(Min\right)}=\dfrac{27}{4}\text{ }khi\text{ }x=\dfrac{3}{2}\)

\(B=9x^2-6x+2\\ =9x^2-6x+1+1\\ =\left(9x^2-6x+1\right)+1\\ =\left(3x-1\right)^2+1\\ Do\text{ }\left(3x-1\right)^2\ge0\forall x\\ \Rightarrow B=\left(3x-1\right)^2+1\ge1\forall x\\ \text{Dấu “=” xảy ra khi: }\\ \left(3x-1\right)^2=0\\ \Leftrightarrow3x-1=0\\ \Leftrightarrow3x=1\\ \Leftrightarrow x=\dfrac{1}{3}\\ Vậy\text{ }B_{\left(Min\right)}=1\text{ }khi\text{ }x=\dfrac{1}{3}\)

\(C=-x^2+2x+4\\ =-x^2+2x-1+5\\ =-\left(x^2-2x+1\right)+5\\ =-\left(x-1\right)^2+5\\ Do\text{ }\left(x-1\right)^2\ge0\forall x\\ \Rightarrow-\left(x-1\right)^2\le0\forall x\\ \Rightarrow C=-\left(x-1\right)^2+5\le5\forall x\\ \text{ Dấu “=” xảy ra khi: }\\ \left(x-1\right)^2=0\\ \Leftrightarrow x-1=0\\ \Leftrightarrow x=1\\ \text{Vậy }C_{\left(Max\right)}=5\text{ }khi\text{ }x=1\)

\(D=-x^2+4x\\ =-x^2+4x-4+4\\ =-\left(x^2-4x+4\right)+4\\ =-\left(x-2\right)^2+4\\ \\ Do\text{ }\left(x-2\right)^2\ge0\forall x\\ \Rightarrow-\left(x-2\right)^2\le0\forall x\\ \Rightarrow C=-\left(x-2\right)^2+4\le4\forall x\\ \text{ Dấu “=” xảy ra khi: }\\ \left(x-2\right)^2=0\\ \Leftrightarrow x-2=0\\ \Leftrightarrow x=2\\ \text{Vậy }C_{\left(Max\right)}=4\text{ }khi\text{ }x=2\)

29 tháng 11 2017

Câu 2:

\(\text{Ta có : }x+y=2\\ \Rightarrow\left(x+y\right)^2=2^2\\ \Rightarrow x^2+2xy+y^2=4\\ Thay\text{ }x^2+y^2=10\text{ }vào\\ \Rightarrow2xy+10=4\\ \Rightarrow2xy=-6\\ \Rightarrow xy=-3\\ \text{Ta lại có : }x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\\ Thay\text{ }x^2+y^2=10;x+y=2;xy=-3\text{ }ta\text{ }được:\\ x^3+y^3=2\cdot\left(10+3\right)=26\)

Vậy \(x^3+y^3=26\text{ }tại\text{ }x+y=2;x^2+y^2=10\)