K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2021

x2 - 2( 3m + 2 )x + 2m2 + 3m + 5 = 0

Để phương trình có nghiệm kép thì Δ = 0

=> [ -2( 3m + 2 ) ]2 - 4( 2m2 + 3m + 5 ) = 0

<=> 4( 3m + 2 )2 - 8m2 - 12m - 20 = 0

<=> 4( 9m2 + 12m + 4 ) - 8m2 - 12m - 20 = 0

<=> 36m2 + 48m + 16 - 8m2 - 12m - 20 = 0

<=> 28m2 + 36m - 4 = 0

<=> 7m2 + 9m - 1 = 0 (*)

Δ = b2 - 4ac = 92 - 4.7.(-1) = 81 + 28 = 109

Δ > 0 nên (*) có hai nghiệm phân biệt

\(\hept{\begin{cases}m_1=\frac{-b+\sqrt{\text{Δ}}}{2a}=\frac{-9+\sqrt{109}}{14}\\m_2=\frac{-b-\sqrt{\text{Δ}}}{2a}=\frac{-9-\sqrt{109}}{14}\end{cases}}\)

Vậy với \(m=\frac{-9\pm\sqrt{109}}{14}\)thì phương trình có nghiệm kép

19 tháng 2 2021

Ta có:

\(\Delta^'=\left(3m+2\right)^2-\left(2m^2+3m+5\right)\)

\(=9m^2+12m+4-2m^2-3m-5\)

\(=7m^2+9m-1\)

Để PT có nghiệm kép thì \(\Delta^'=0\)

\(\Leftrightarrow7m^2+9m-1=0\)

\(\Delta_m=9^2-4\cdot7\cdot\left(-1\right)=109\)

\(\Rightarrow m=\frac{-9\pm\sqrt{109}}{14}\)

Vậy khi \(m=\frac{-9\pm\sqrt{109}}{14}\) thì PT có nghiệm kép

14 tháng 6 2017

Pt \(x^3-\left(m+1\right)x^2-\left(2m^2-3m+2\right)x+2m\left(2m-1\right)=0\) (1)

Ta thấy ngay pt (1) có 1 nghiệm x = 2

Vậy nên ta có: \(x^3-\left(m+1\right)x^2-\left(2m^2-3m+2\right)x+2m\left(2m-1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+\left(1-m\right)x+\left(-2m^2+m\right)\right)=0\)

Để pt (1) có đúng hai nghiệm phân biệt thì pt \(\Leftrightarrow x^2+\left(1-m\right)x+\left(-2m^2+m\right)=0\) có 1 nghiệm duy nhất khác 2

Tức là: \(\hept{\begin{cases}\Delta=0\\4+2\left(1-m\right)+\left(-2m^2+m\right)\ne0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(3m-1\right)^2=0\\-2m^2-m+6\ne0\end{cases}}\Leftrightarrow m=\frac{1}{3}\)

Vậy \(m=\frac{1}{3}.\)

18 tháng 9 2024

Thầy/cô ơi làm sao để tách ra được nhân tử chung (x-2) vậy ạ 

a: Để đây là hàm số bậc nhất thì (3m-1)(2m+3)<>0

hay \(m\in\left\{\dfrac{1}{3};-\dfrac{3}{2}\right\}\)

c: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m^2-5m+6=0\\m^2+mn+6n^2< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;3\right\}\\m^2+mn+6n^2< >0\end{matrix}\right.\)

Trường hợp 1: m=2

\(\Leftrightarrow4+2n+6n^2< >0\)

Đặt \(6n^2+2n+4=0\)

\(\text{Δ}=2^2-4\cdot6\cdot4=4-96=-92< 0\)

Do đó: \(4+2n+6n^2< >0\forall n\)

Trường hợp 2: m=3

\(\Leftrightarrow9+3n+6n^2< >0\)

Đặt \(6n^2+3n+9=0\)

\(\text{Δ}=3^2-4\cdot6\cdot9=9-216=-207< 0\)

Do đó: \(6n^2+3n+9\ne0\forall n\)

Vậy: m=2 hoặc m=3

28 tháng 7 2018

a) Để y là hàm số bậc nhất

\(thì\Rightarrow\left\{{}\begin{matrix}\left(3m-1\right)\left(2n+3\right)=0\\4n+3\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}3m-1=0\\2n+3=0\end{matrix}\right.\\4n\ne-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}m=\dfrac{1}{3}\\n=-\dfrac{3}{2}\end{matrix}\right.\)

Vậy để y là hàm số bậc nhất thì \(m=\dfrac{1}{3}\) hoặc \(n=-\dfrac{3}{2}\)

b;c Tương tự.

30 tháng 7 2018

thanksvui

Tham khảo:Cho phường trình x^2-(2m +3)x+m^2+2m+2=0. tìm m để pt trên có 2 nghiệm x1x2 thỏa x1=2x2?

Giải delta xác định m ta có phương trình cỉ có nghiệm khi m lớn hơn hoặc bằng -1/4 

Hệ thức Vi-et cho: 

x1 + x2 = 2m + 3 

x1*x2 = m^2 + 2m + 2 

Vì x1 = 2x2 
=> x1 + x2 = 2x2 + x2 = 3x2 = 2m + 3 (1) 
Và x1 * x2 = 2x2 * x2 = 2x2^2 = m^2 + 2m + 2 (2) 

Từ (1) ta có: 3x2 = 2m + 3 
<=> x2 = (2m + 3)/3 
<=> x2^2 = {(2m + 3)/3}^2 
<=> x2^2 = (4m^2 + 12m + 9) / 9 (3) 

Từ (2) ta có: 2X^2 = m^2 + 2m + 2 
<=> x2^2 = (m^2 + 2m + 2) / 2 (4) 

Từ (3) và (4) ta có phương trình: 

(4m^2 + 12m + 9) / 9 = (m^2 + 2m + 2) / 2 
<=> 8m^2 + 24m + 18 = 9m^2 + 18m + 18 
<=> m^2 - 6m = 0 
<=> m (m - 6) = 0 

<=> m = 0 (thoả) 
hoặc m = 6 (thoả) 

=> Khi m = 0 hoặc m = 6 thì phương trình đã cho có hai nghiệm x1 và x2 và x1 = 2x2

15 tháng 6 2017

(m2-3m+2)x+3=2m      =>(m-2)(m-1)x=3(m-1)    =>(m-1)(xm-2x-3)=0   

nếu m-1=0 thì m=1 xm-2x-3=-x-3=0 thì có 1 no duy nhất x=3

nếu xm-2x-3=0 thì x(m-2)=3   

m-2-331-1
x-113-3
m-1531

vậy m=-1,5,3,1 thì pt có 1 no duy nhất