K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2022

Áp dụng hệ thức vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1.x_2=-2m-5\end{matrix}\right.\)

Ta có:

\(x^2_1+x^2_2=18\)

\(\left(x_1+x_2\right)^2-2x_1.x_2=18\)

\(\left(2m-2\right)^2-2.\left(-2m-5\right)=18\)

\(4m^2-8m+4+4m+10-18=0\)

\(4m^2-4m+1=5\)

\(\left(2m-1\right)^2=5\)

\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{\sqrt{5}+1}{2}\\m=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)

 

2 tháng 4 2020

Đk pt có  2 nghiêm pb

\(\Delta=a^2-4>0\)

=>\(a^2>4\)

=>\(\orbr{\begin{cases}a>2\\a< -2\end{cases}}\)

theo Đly Vi-et, ta có x1+x2=-a

                                x1.x2=1

\(\frac{x_1^2}{x_2^2}+\frac{x_2^2}{x_1^2}=\frac{x_1^4+x_2^4}{x_1^2.x_2^2}=\frac{\left(x_1^2+x_2^2\right)^2-2x_1^2x_2^2}{1}=\left(\left(x_1+x_2\right)^2-2x_1x_2\right)^2-2=\left(a^2-2\right)^2-2\)

=>(a2-2)2-2 >7

=>(a2-2)2 >9

=>\(\orbr{\begin{cases}a^2-2>3\\a^2-2< -3\end{cases}=>\orbr{\begin{cases}a^2>5\\a^2< -1\left(loai\right)\end{cases}=>\orbr{\begin{cases}a>\sqrt{5}\\a< -\sqrt{5}\end{cases}}}\left(tmdk\right)}\)

24 tháng 5 2020

\(x^2+3x+m-3=0\)

Ta có \(\Delta=b^2-4ac\)

             \(=3^2-4.1.\left(m-3\right)\)

             \(=9-4m+12\)

             \(=21-4m\)

Đẻ pt có 2 nghiệm \(x_1;x_2\)\(\Leftrightarrow\Delta\ge0\Leftrightarrow21-4m\ge0\)

                                                  \(\Leftrightarrow x\le\frac{21}{4}\)

Áp dụng vi-ét ta có 

\(\hept{\begin{cases}x_1+x_2=-3\\x_1.x_2=m-3\end{cases}}\)

Ta có \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=5\Leftrightarrow\frac{x_1^2+x_2^2}{x_1.x_2}=5\)

                                        \(\Leftrightarrow x_1^2+x_2^2=5x_1x_2\)

                                        \(\Leftrightarrow x_1^2+x_2^2-5x_1.x_2=0\)

                                       \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-5x_1x_2=0\)

                                        \(\Leftrightarrow\left(x_1+x_2\right)^2-7x_1x_2=0\)

                                       \(\Leftrightarrow\left(-3\right)^2-7\left(m-3\right)=0\)

                                        \(\Leftrightarrow9-7m+21=0\)

                                        \(\Leftrightarrow30-7m=0\)

                                        \(\Leftrightarrow7m=30\)

                                       \(\Leftrightarrow m=\frac{30}{7}\) (TM)

Vậy \(m=\frac{30}{7}\) thì thỏa mãn bài toán 

25 tháng 5 2020

vẽ hộ cái hình

NV
23 tháng 5 2019

Bạn ghi lại đề, \(x_1^2-2mx_1+2m-m\) xuất hiện 2 con m ở cuối nên chắc là bạn ghi nhầm chỗ nào đó

24 tháng 5 2019

m ở cuối là 1 nha bn

7 tháng 2 2021

a) Phương trình \(x^2-2mx-2m-1=0\)có các hệ số a = 1; b = - 2m; c = - 2m - 1

\(\Delta=\left(-2m\right)^2-4\left(-2m-1\right)=4m^2+8m+4=4\left(m+1\right)^2\ge0\forall m\)

Vậy phương trình luôn có 2 nghiệm x1, x2 với mọi m (đpcm)

b) Theo Viète, ta có: \(x_1+x_2=2m;x_1x_2=-2m-1\)

Hệ thức \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\Leftrightarrow2\left(x_1^2+x_2^2\right)=-5x_1x_2\)

\(\Leftrightarrow2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=-5x_1x_2\)hay \(2\left(4m^2+4m+2\right)=10m+5\Leftrightarrow8m^2-2m-1=0\)\(\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{2}\\m=-\frac{1}{4}\end{cases}}\)

Vậy \(m=\frac{1}{2}\)hoặc \(m=-\frac{1}{4}\)thì phương trình có 2 nghiệm x1, x2 thỏa mãn\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\)

6 tháng 7 2017

Để PT có 2 nghiệm phân biệt thì

\(\Delta'=\left(m-2\right)^2-\left(m^2-2m+4\right)>0\)

\(\Leftrightarrow m< 0\)

Theo vi et ta có:

\(\hept{\begin{cases}x_1+x_2=-2m+4\\x_1.x_2=m^2-2m+4\end{cases}}\)

Theo đề bài thì

\(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)

\(\Leftrightarrow\frac{2}{\left(x_1+x_2\right)^2-2x_1.x_2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)

\(\Leftrightarrow\frac{2}{\left(-2m+4\right)^2-2\left(m^2-2m+4\right)}-\frac{1}{m^2-2m+4}=\frac{15}{m}\)

\(\Leftrightarrow\frac{1}{m^2-6m+4}-\frac{1}{m^2-2m+4}=\frac{15}{m}\)

\(\Leftrightarrow15m^4-120m^3+296m^2-480m+240=0\)

Với m < 0  thì VP > 0 

Vậy không tồn tại m để thỏa bài toán.

27 tháng 4 2020

Xét 

\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-6\right)=4m^2+4m+1-4m^2-4m+24=25>0\)

Vậy phương trình luôn có nghiệp với \(\forall m\)

Theo Viete ta có ngay \(x_1+x_2=2m+1;x_1x_2=m^2+m-6\)

Ta có biến đổi sau:

\(x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2=\left(2m+1\right)^2-3\left(m^2+m-6\right)\)

\(=4m^2+4m+1-3m^2-3m+18\)

\(=m^2-m+19=\left(m-\frac{1}{2}\right)^2+18,75>0\) 

Vậy \(\left|x_1^3+x_2^3\right|=\left|m^2-m+19\right|=m^2-m+19\)

Khi đó ta có được \(m^2-m+19=50\Leftrightarrow m^2-m-31=0\)

Đến đây dễ rồi nè :)

8 tháng 4 2018

a) Tìm m sao cho \(\Delta=0\)rồi thay vào pt tìm nghiệm
b)\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=2^2-2.\left(1+2m\right)=8\Rightarrow m=-\frac{3}{2}\)

8 tháng 4 2018

Cho mình bổ sung thêm phần xác định m chút nha

Áp dụng hệ thức viets vào phương trình (1 ) ta có

\(x_1+x_2=S=-2;x_1.x_2=p=1+2m\)  Hai số x1 và x2 tồn tại khi \(S^2-4P\ge0\Leftrightarrow4-4\left(1+2m\right)\ge0\)=> \(-8m\ge0\Rightarrow m\le0\)

Chuyển vế :

\(x_1^2=2\left(m+1\right)x_1-m^2+1\)

thay vào Phuogw trình tìm m thôi

3 tháng 6 2017

1. Với m=5

\(\Rightarrow x^2-\left(2.5+1\right).x+5^2-1=0\\ \Rightarrow x^2-11.x=-24\\ \)

\(\Rightarrow x^2-\frac{11}{2}.2.x+\left(\frac{11}{2}\right)^2=-24-\left(\frac{11}{2}\right)^2=\frac{-217}{4}\\ \Rightarrow\left(x+\frac{11}{2}\right)^2=-\frac{217}{4}\)

nên x thuộc rỗng

5 tháng 6 2018

1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0

Nếu x-5=0 suy ra x=5

Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0

Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0

Suy ra x=1 hoặc x=6.

4 tháng 7 2020

bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)

\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)

\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)

thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)

\(\left(++\right)< =>x-5=0< =>x=5\)

Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)