K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 2 2020

Điều đó xảy ra khi và chỉ khi:

\(\Delta'=\left(m+1\right)^2-3\left(-2m^2+3m-2\right)\le0\)

\(\Leftrightarrow m^2+m+1\le0\)

\(\Leftrightarrow\left(m+\frac{1}{2}\right)^2+\frac{3}{4}\le0\)

Không tồn tại m thỏa mãn yêu cầu đề bài

NV
25 tháng 4 2019

Hệ điều kiện: \(\left\{{}\begin{matrix}a>0\\\Delta'\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\left(m-1\right)^2-\left(3m+6\right)\left(m+1\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\-2m^2-11m-5\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m\le-5\\m\ge-\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m\ge-\frac{1}{2}\)

25 tháng 4 2019

+)Xét 2m2-3m+1=0 => m=1 ,m=1/2

Vs m=1

Thay vào bpt => -2x+1=0

=>x=1/2

Vs m=1/2

Thay vào ptr =>1>0 ( lđ)

+) Xét 2m2-3m+1≠0

Ta có : Δ'=(-(2m-1))2-1.(2m2-3m+1)

= 2m2-m

Để bptr luôn đúng thì

\(\left\{{}\begin{matrix}2m^2-3m+1>0\\2m^2-m< 0\end{matrix}\right.\)

Sau đó giải ra , rồi giao các no vào nhé....

10 tháng 10 2020

Ta có: \(x^2-2\left(3m-1\right)x+m+3\ge0\)

\(\Leftrightarrow f\left(m\right)=\left(-6x+1\right)m+x^2+2x+3\ge0\)

Ta thấy \(f\left(m\right)\) là hàm số bậc nhất mà \(x\in[1;+\infty)\Rightarrow-6x+1< 0\)

\(\Rightarrow\) Hàm \(f\left(m\right)\) nghịch biến

Từ giả thiết \(m\le1\Rightarrow f\left(m\right)\ge f\left(1\right)\)

\(\Leftrightarrow x^2-2\left(3m-1\right)x+m+3\ge\left(x-2\right)^2\ge0\left(đpcm\right)\)

12 tháng 3 2020

\(f\left(x\right)=x^2-2mx+m^2-3m+2\)

\(\Leftrightarrow f\left(x\right)=\left(x-m\right)^2-3m+2\)

Ta có : \(\left(x-m\right)^2\ge0\)

Để \(f\left(x\right)>0\)

\(\Leftrightarrow-3m+2>0\)

\(\Leftrightarrow m>-\frac{2}{3}\)

Vậy để \(f\left(x\right)>0\forall x\inℝ\Leftrightarrow m>-\frac{2}{3}\)

P/s : K biết có sai chỗ nào k ạ ? Check hộ e :)

12 tháng 3 2020

Bài vừa rồi mik làm sai nhé :(( Làm lại :

\(f\left(x\right)=x^2-2mx+m^2-3m+2\)

\(\Leftrightarrow f\left(x\right)=\left(x-m\right)^2-3m+2\)

Ta thấy : \(\left(x-m\right)^2\ge0\)

Để \(f\left(x\right)>0\)

\(\Leftrightarrow-3m+2>0\)

\(\Leftrightarrow2>3m\)

\(\Leftrightarrow m< \frac{2}{3}\)

Vậy để \(f\left(x\right)>0\forall x\inℝ\Leftrightarrow m< \frac{2}{3}\)

AH
Akai Haruma
Giáo viên
2 tháng 3 2020

Lời giải:

Để $x^2-2(m-1)x+3m-5\geq 0$ với mọi $x\in\mathbb{R}$ thì:

$\Delta'\leq 0, \forall x\in\mathbb{R}$

$\Leftrightarrow (m-1)^2-(3m-5)\leq 0, \forall x\in\mathbb{R}$

$\Leftrightarrow m^2-5m+6\leq 0, \forall x\in\mathbb{R}$

$\Leftrightarrow (m-2)(m-3)\leq 0, \forall x\in\mathbb{R}$

$\Leftrightarrow 2\leq m\leq 3$