K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Δ=3^2-4*2*m=9-8m

Để phương trình có 2 nghiệm phân biệt thì -8m+9>0

=>-8m>-9

=>m<9/8

b: Để phương trình có nghiệm kép thì -8m+9=0

=>m=9/8

c: Để phương trình vô nghiệm thì -8m+9<0

=>-8m<-9

=>m>9/8

25 tháng 8 2021

a, Để pt có 2 nghiệm pb khi \(\Delta>0\)

\(\Delta=\left(-2m\right)^2-4\left(m+6\right)=4m^2-4m-24>0\Leftrightarrow m< -2;m>3\)

b, Để pt trên là pt bậc 2 khi \(m\ne0\)

Để pt vô nghiệm khi \(\Delta< 0\)

\(\Delta=4m^2-4m\left(m+3\right)=4m^2-4m^2-12m< 0\Leftrightarrow-12m< 0\Leftrightarrow m>0\)

c, Để pt trên là pt bậc 2 khi \(m\ne2\)

Để pt trên có nghiệm kép \(\Delta=0\)

\(\Delta=\left(2m-3\right)^2-4\left(m+1\right)\left(m-2\right)=4m^2-12m+9-4\left(m^2-m-2\right)\)

\(=-8m+17=0\Leftrightarrow m=\frac{17}{8}\)

9 tháng 2 2022

Ta có: \(\Delta=4\left(m-3\right)^2-4.\left(m^2-1\right)\)

a. Để phương trình vô nghiệm thì \(\Delta< 0\Leftrightarrow\left(m-3\right)^2< m^2-1\Leftrightarrow m^2-6m+9< m^2-1\Leftrightarrow6m>10\Leftrightarrow m>\dfrac{10}{6}=\dfrac{5}{3}\)

b. Để phương trình có nghiệm thì: 

\(\Delta\ge0\Leftrightarrow\left(m-3\right)^2\ge m^2-1\Leftrightarrow m^2-6m+9\ge m^2-1\Leftrightarrow6m\le10\Leftrightarrow m\le\dfrac{10}{6}=\dfrac{5}{3}\)

c. Để phương trình có nghiệm kép thì:

\(\Delta=0\Leftrightarrow\left(m-3\right)^2=m^2-1\Leftrightarrow m^2-6m+9=m^2-1\Leftrightarrow6m=10\Leftrightarrow m=\dfrac{10}{6}=\dfrac{5}{3}\)

Nghiệm kép của phương trình là: \(\dfrac{-b}{2a}=\dfrac{2\left(m-3\right)}{2.1}=\dfrac{2\left(\dfrac{5}{3}-3\right)}{2}=-\dfrac{4}{3}\)

 

d. Để phương trình có nghiệm phân biệt thì:

\(\Delta>0\Leftrightarrow\left(m-3\right)^2>m^2-1\Leftrightarrow m^2-6m+9>m^2-1\Leftrightarrow6m< 10\Leftrightarrow m< \dfrac{10}{6}=\dfrac{5}{3}\)

9 tháng 2 2022

a, Để pt vô nghiệm 

\(\Delta'=\left(m-3\right)^2-\left(m^2-1\right)=-6m+9+1=-6m+10< 0\Leftrightarrow m>\dfrac{5}{3}\)

b, Để pt có nghiệm 

\(\Delta'=-6m+10\ge0\Leftrightarrow m\le\dfrac{5}{3}\)

c, Để pt có nghiệm kép 

\(\Delta'=-6m+10=0\Leftrightarrow m=\dfrac{5}{3}\)

\(x_1=x_2=\dfrac{2\left(m-3\right)}{2}=m-3\)

d, Để pt có 2 nghiệm pb 

\(\Delta=-6m+10>0\Leftrightarrow m< \dfrac{5}{3}\)

15 tháng 4 2018

2) có 2 nghiêm khi \(\Delta^,=1-m+1>0\Rightarrow m< 2\)

1) theo đề bài ta có x1=2

    Theo viets ta có x1+x2=2 => x=1

                                   \(x_1.x_2=m-1=2\Rightarrow m=3\)

20 tháng 4 2018

Bạn làm sai rồi !

Đề cho 1 No chứ đâu phải là 2 No ?

Mình ghi tắt:[No là nghiệm]  

Thông cảm mình ghi tắt quen tay~~@~~

21 tháng 4 2020

 giải thích vì sao

21 tháng 4 2020

m khác 2 nha bn

Học tốt

AH
Akai Haruma
Giáo viên
18 tháng 8 2021

Lời giải:
$\Delta'=4-6m$

a. Để pt có nghiệm thì $\Delta'=4-6m\geq 0\Leftrightarrow m\leq \frac{2}{3}$

b/ Để pt có 2 nghiệm phân biệt thì $\Delta'=4-6m>0\Leftrightarrow m< \frac{2}{3}$

c. Để pt có nghiệm kép thì $\Delta'=4-6m=0\Leftrightarrow m=\frac{2}{3}$

d. Để pt vô nghiệm thì $\Delta'=4-6m< 0\Leftrightarrow m> \frac{2}{3}$

a: \(\text{Δ}=\left(-4\right)^2-4\cdot3\cdot2m=-24m+16\)

Để phương trình có nghiệm thì \(\text{Δ}\ge0\)

\(\Leftrightarrow-24m+16\ge0\)

\(\Leftrightarrow-24m\ge-16\)

hay \(m\le\dfrac{2}{3}\)

b: Để phương trình có hai nghiệm phân biệt thì Δ>0

hay \(m< \dfrac{2}{3}\)

c: Để phương trình có nghiệm kép thì Δ=0

hay \(m=\dfrac{2}{3}\)

15 tháng 6 2016

a)(m-1)x2+2(m-1)x-m

pt bậc 2 có dạng ax2+bx+c=0.

a=(m-1);b=(m-1);c=-m

áp dụng b2-4ac.ta có:Denta=(m-1)2-4[(-m)*(m-1)]

Để pt có nghịm kép =>Denta=0

=>(m-1)2-4[(-m)*(m-1)]=0

=>m=1 hoặc m=0

Thay với m=1 vào và m=0 vào tự tính

b)Để pt có 2 nghiệm phân biệt thì Denta>0

=>(m-1)2-4[(-m)*(m-1)]>0

=>5m2-6m+1>0 

Giải BPT này ra

15 tháng 6 2016

à mk thêm 1 bước nữa để bạn giải cho nhẹ

5m2-6m+1>0

<=>(m-1)(5m-1)>0 tới đây học sinh lớp 6 cx có thể giải đc nhé chúc bạn học tốt