Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(f\left(x\right)=-x^2+mx+m+1\)
Để f(x) \(\le0\) \(\forall x\in R\) mà \(a=-1< 0\)
\(\Leftrightarrow\Delta\le0\) \(\Leftrightarrow\Delta=m^2+4\left(m+1\right)\le0\Leftrightarrow m^2+4m+4\le0\)
\(\Leftrightarrow\left(m+2\right)^2\le0\Leftrightarrow\left(m+2\right)^2=0\Leftrightarrow m=-2\)
b, Để hàm số y xác định \(\forall x\in R\)
\(\Leftrightarrow mx^2-2mx+2\ge0\) có nghiệm \(\forall x\in R\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=4m^2-2.4.m\le0\\a=m>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}0\le m\le2\\m>0\end{matrix}\right.\) \(\Leftrightarrow0< m\le2\)
a/ Do \(a=-1< 0\)
\(\Rightarrow\) Để \(f\left(x\right)\le0\) \(\forall x\in R\Leftrightarrow\Delta'\le0\)
\(\Leftrightarrow m^2+4\left(m+1\right)\le0\Leftrightarrow\left(m+2\right)^2\le0\)
\(\Rightarrow m=-2\)
b/ Để hàm số xác định với mọi x
\(\Leftrightarrow f\left(x\right)=mx^2-2mx+2\ge0\) \(\forall x\)
- Với \(m=0\Rightarrow f\left(x\right)=2\) thỏa mãn
- Với \(m\ne0\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta'=m^2-2m\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\0< m< 2\end{matrix}\right.\)
Vậy \(0\le m< 2\)
Thế \(\hept{\begin{cases}x_1^2=2mx_1+3m\\x_2^2=2mx_2+3m\end{cases}}\) vô cái dưới là xong nha
\(x^2+2mx+m^2+2\left|x+m\right|+1< -2m^2+3m\)
\(\Leftrightarrow\left(x+m\right)^2+2\left|x+m\right|+1< -2m^2+3m\)
\(\Leftrightarrow\left(\left|x+m\right|+1\right)^2< -2m^2+3m\)
Do \(\left|x+m\right|\ge0\Rightarrow\left(\left|x+m\right|+1\right)^2\ge1\)
\(\Rightarrow-2m^2+3m>1\Rightarrow-2m^2+3m-1>0\)
\(\Rightarrow\frac{1}{2}< m< 1\)
a/ \(x^2-2x-3=-m\)
Đặt \(f\left(x\right)=x^2-2x-3\)
\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=-4\) ; \(f\left(-1\right)=0\) ; \(f\left(3\right)=0\)
\(\Rightarrow\) Để pt có nghiệm trên khoảng đã cho thì \(-4\le-m\le0\Rightarrow0\le m\le4\)
b/ \(-x^2+2mx-m+1=0\)
\(\Delta'=m^2+m-1\ge0\Rightarrow\left[{}\begin{matrix}m\le\frac{-1-\sqrt{5}}{2}\\m\ge\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)
Để pt có 2 nghiệm đều âm
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m< 0\\x_1x_2=m-1>0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
Vậy pt luôn có ít nhất 1 nghiệm \(x\ge0\) với \(\left[{}\begin{matrix}m\le\frac{-1-\sqrt{5}}{2}\\m\ge\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)
c/ \(f\left(x\right)=2x^2-x-1=m\)
Xét hàm \(f\left(x\right)=2x^2-x-1\) trên \(\left[-2;1\right]\)
\(-\frac{b}{2a}=\frac{1}{4}\) ; \(f\left(\frac{1}{4}\right)=-\frac{9}{8}\) ; \(f\left(-2\right)=9\); \(f\left(1\right)=0\)
\(\Rightarrow\) Để pt có 2 nghiệm pb thuộc đoạn đã cho thì \(-\frac{9}{8}< m\le0\)
d/ \(f\left(x\right)=x^2-2x+1=m\)
Xét \(f\left(x\right)\) trên \((0;2]\)
\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=0\) ; \(f\left(0\right)=1\); \(f\left(2\right)=1\)
Để pt có nghiệm duy nhất trên khoảng đã cho \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)
e/ ĐKXĐ: \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge-3\\x\le-4\end{matrix}\right.\\x\ge m\end{matrix}\right.\)
\(x^2+4x+3=x-m\)
\(\Leftrightarrow f\left(x\right)=x^2+3x+3=-m\)
Xét hàm \(f\left(x\right)\)
\(-\frac{b}{2a}=-\frac{3}{2}\) ; \(f\left(-\frac{3}{2}\right)=\frac{3}{4}\); \(f\left(-3\right)=3\); \(f\left(-4\right)=7\)
Để pt có 2 nghiệm thỏa mãn \(x\notin\left(-4;-3\right)\) thì \(\left[{}\begin{matrix}\frac{3}{4}< m\le3\\m\ge7\end{matrix}\right.\) (1)
Mặt khác \(x^2+3x+m+3=0\)
Để pt có 2 nghiệm thỏa mãn \(m\le x_1< x_2\) thì:
\(\left\{{}\begin{matrix}f\left(m\right)\ge0\\x_1+x_2>2m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2+4m+3\ge0\\2m< -3\end{matrix}\right.\) \(\Rightarrow m\le-3\) (2)
Từ (1) và (2) suy ra ko tồn tại m thỏa mãn
\(f\left(x\right)=x^2-2mx+m^2-3m+2\)
\(\Leftrightarrow f\left(x\right)=\left(x-m\right)^2-3m+2\)
Ta có : \(\left(x-m\right)^2\ge0\)
Để \(f\left(x\right)>0\)
\(\Leftrightarrow-3m+2>0\)
\(\Leftrightarrow m>-\frac{2}{3}\)
Vậy để \(f\left(x\right)>0\forall x\inℝ\Leftrightarrow m>-\frac{2}{3}\)
P/s : K biết có sai chỗ nào k ạ ? Check hộ e :)
Bài vừa rồi mik làm sai nhé :(( Làm lại :
\(f\left(x\right)=x^2-2mx+m^2-3m+2\)
\(\Leftrightarrow f\left(x\right)=\left(x-m\right)^2-3m+2\)
Ta thấy : \(\left(x-m\right)^2\ge0\)
Để \(f\left(x\right)>0\)
\(\Leftrightarrow-3m+2>0\)
\(\Leftrightarrow2>3m\)
\(\Leftrightarrow m< \frac{2}{3}\)
Vậy để \(f\left(x\right)>0\forall x\inℝ\Leftrightarrow m< \frac{2}{3}\)
ĐKXĐ: \(x^2-2mx+m^2-3m+2>0\)
\(\dfrac{x}{\sqrt{x^2-2mx+m^2-3m+2}}=\sqrt{x^2-2mx+m^2-3m+2}\)
- Với \(x< 0\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP>0\end{matrix}\right.\) pt vô nghiệm
- Với \(x\ge0\)
\(\Rightarrow x=x^2-2mx+m^2-3m+2=0\)
\(\Rightarrow x^2-\left(2m+1\right)x+m^2-3m+2=0\) (1)
+ Với \(m^2-3m+2=0\Rightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)
\(m=1\Rightarrow x^2-3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) có 2 nghiệm (ktm)
\(m=2\Rightarrow x^2-5x=0\Rightarrow x=\left\{0;5\right\}\) ktm
+ Với \(m^2-3m+2\ne0\)
\(\Rightarrow\) pt đã cho có nghiệm duy nhất khi \(\left(1\right)\) có đúng 1 nghiệm dương
\(\Rightarrow x_1x_2=m^2-3m+2< 0\)
\(\Rightarrow1< m< 2\)