Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
\(=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{2}{3\sqrt{x}-6}\right):\dfrac{2\sqrt{x}+3}{3\sqrt{x}}\)
\(=\dfrac{3+2\sqrt{x}}{3\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{3\sqrt{x}}{2\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-2}\)
a) Phương trình 1,5x2 – 1,6x + 0,1 = 0
Có a + b + c = 1,5 – 1,6 + 0,1 = 0 nên x1 = 1; x2 = \(\dfrac{0,1}{15}\)
c) \(\left(2-\sqrt{3}\right)x^2+2\sqrt{3x}-\left(2+\sqrt{3}\right)=0\)
Có \(a+b+c=2-\sqrt{3}+2\sqrt{3}-\left(2+\sqrt{3}\right)=0\)
Nên x1 = 1, x2 = \(\dfrac{-\left(2+\sqrt{3}\right)}{2-\sqrt{3}}\) = -(2 + \(\sqrt{3}\))2 = -7 - 4\(\sqrt{3}\)
d) (m – 1)x2 – (2m + 3)x + m + 4 = 0
Có a + b + c = m – 1 – (2m + 3) + m + 4 = 0
Nên x1 = 1, x2 = \(\dfrac{m+4}{m-1}\)
a) Phương trình 1,5x2 – 1,6x + 0,1 = 0
Có a + b + c = 1,5 – 1,6 + 0,1 = 0 nên x1 = 1; x2 =
b) Phương trình √3x2 – (1 - √3)x – 1 = 0
Có a – b + c = √3 + (1 - √3) + (-1) = 0 nên x1 = -1, x2 = =
c) (2 - √3)x2 + 2√3x – (2 + √3) = 0
Có a + b + c = 2 - √3 + 2√3 – (2 + √3) = 0
Nên x1 = 1, x2 = = -(2 + √3)2 = -7 - 4√3
d) (m – 1)x2 – (2m + 3)x + m + 4 = 0
Có a + b + c = m – 1 – (2m + 3) + m + 4 = 0
Nên x1 = 1, x2 =
ĐKXĐ của P là \(x\ge0;x\ne9\)
\(P=\left(\frac{2}{\sqrt{x}-3}+\frac{1}{\sqrt{x}+3}\right)\div\frac{\sqrt{x}+1}{\sqrt{x}-3}\)\(=\frac{2\left(\sqrt{x}+3\right)+\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{3\sqrt{x}+3}{\sqrt{x}+3}\cdot\frac{1}{\sqrt{x}+1}=\frac{3}{\sqrt{x}+3}\)
\(\Rightarrow\frac{1}{P}=\frac{\sqrt{x}+3}{3}=m\)\(\Leftrightarrow\frac{\sqrt{x}}{3}=m-1\Leftrightarrow\sqrt{x}=3\left(m-1\right)\)
Để phương trình trên có nghiệm thì \(\hept{\begin{cases}3\left(m-1\right)\ge0\\9\left(m-1\right)^2\ne9\end{cases}\Leftrightarrow\hept{\begin{cases}m\ge1\\\hept{\begin{cases}m\ne0\\m\ne2\end{cases}}\end{cases}\Leftrightarrow}\hept{\begin{cases}m\ge1\\m\ne2\end{cases}}}\)
\(\hept{\begin{cases}3\left(m-1\right)\ge0\\9\left(m-1\right)^2\ne9\end{cases}\Leftrightarrow\hept{\begin{cases}m\ge1\\\hept{\begin{cases}m\ne0\\m\ne2\end{cases}}\end{cases}\Leftrightarrow}\hept{\begin{cases}m\ge1\\m\ne2\end{cases}}}\)\(3\left(m-1\right)\ge0\)và \(9\left(m-1\right)^2\ne9\)
Giải hai điều kiện trên ta được \(m\ge1\) và \(m\ne2\)
Vậy để phương trình có nghiệm thì \(\hept{\begin{cases}m\ge1\\m\ne2\end{cases}}\)
<=>2x\(\sqrt{x^2+4}\)+2\(\sqrt{x^2+4}\)=x\(^2\)-x-2
=>2x\(\sqrt{x^2+4}\)+2\(\sqrt{x^2+4}\)-x2+x+2=0
=>(x+1)(2\(\sqrt{x^2+4}\)-x+2)=0
=>2\(\sqrt{x^2+4}\)-x+2=0
=>x=-1
Để phương trình có 2 nghiệm phân biệt thì:
\(\Delta>0\)
<=> \(\left[-\left(2m+5\right)\right]^2-4.1.\left(2m+1\right)>0\)
\(\Leftrightarrow4m^2+12m+21>0\)
\(\Leftrightarrow4m^2+12m+9+12>0\)
<=> \(\left(2m+3\right)^2+12>0\)
Vì (2m+3)2 luôn lớn hơn hoặc bằng 0 với mọi m nên phương trình đã cho có nghiệm với mọi giá trị m.
Theo viét:
\(\left\{{}\begin{matrix}x_1+x_2=2m+5\\x_1x_2=2m+1\end{matrix}\right.\)
Theo đề:
\(M=\left|\sqrt{x_1}-\sqrt{x_2}\right|\) (điều kiện: \(x_1;x_2\ge0\))
=> \(M^2=x_1+x_2-2\sqrt{x_1x_2}=2m+5-2\sqrt{2m+1}\)
<=> \(M^2=\left(\sqrt{2m+1}\right)\left(\sqrt{2m+1}\right)-2\sqrt{\left(2m+1\right)}+4\)
<=> \(M^2=\left(\sqrt{2m+1}\right)\left(\sqrt{2m+1}-2\right)+4\)
<=> \(M^2=\left(\sqrt{2m+1}-1\right)^2+4\ge4\)
=> \(M\ge2\).
Dấu "=" xảy ra khi m = 0
Thế m = 0 vào phương trình ở đề được:
\(x^2-5x+1=0\)
Phương trình này có hai nghiệm dương -> thỏa mãn điều kiện.
Vậy min M = 2 và m = 0
☕T.Lam
\(\sqrt{x}+\sqrt{1-x}+2m\sqrt{x\left(1-x\right)}-2\sqrt[4]{x\left(1-x\right)}=m^3\)
gì vậy ạ