Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu này bấm máy cho nhanh bạn ơi, giải kia k chắc lỡ sai uổn lắm..
1.
\(y'=6x^2+3m\)
Để hàm nghịch biến trên \(\left(1;2\right)\Leftrightarrow y'=0\) có 2 nghiệm pb thỏa mãn \(x_1\le1< 2\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\sqrt{\frac{-m}{2}}\le2\end{matrix}\right.\) \(\Leftrightarrow-4\le m< 0\)
2.
Bạn coi lại đề, biểu thức y không hợp lý
\(y'=x^2-2xm+4m-3\)
Để hàm số đồng biến trên R \(\Rightarrow y'\ge0\) \(\forall x\in R\)
\(\Rightarrow x^2-2mx+4m-3\ge0\) \(\forall x\in R\)
\(\Rightarrow\Delta'=m^2-4m+3\le0\Rightarrow1\le m\le3\)
\(\Rightarrow GTLN\) của m để hs đồng biến trên R là \(m=3\)
Lời giải:
a)
Hàm $y$ đồng biến trên khoảng xác định khi mà
\(y'=3x^2-6(2m+1)x+12m+5\geq 0\)
\(\Leftrightarrow \Delta'=9(2m+1)^2-3(12m+5)\leq 0\)
\(\Leftrightarrow -\sqrt{\frac{1}{6}}\leq m\leq \sqrt{\frac{1}{6}}\)
b) Hàm $y$ đồng biến trên TXĐ khi:
\(y'=3mx^2-2(2m-1)x+m-2\geq 0\) với mọi \(x\in\mathbb{R}\)
Để đảm bảo điều trên xảy ra với mọi $x$ thì \(m>0\)
Khi đó \(\Delta'=(2m-1)^2-3m(m-2)\leq 0\)
\(\Leftrightarrow (m+1)^2\leq 0\) (vô lý)
Do đó không tồn tại $m$ thỏa mãn
\(y'=f\left(x\right)=-x^2+2\left(m+1\right)x+m+3\)
Hàm đã cho đồng biến trên \(\left(0;3\right)\) khi và chỉ khi \(y'=0\) có 2 nghiệm pb thỏa mãn \(x_1\le0< 3\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\ge0\\f\left(3\right)\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m+3\ge0\\7m\ge0\end{matrix}\right.\) \(\Rightarrow m\ge0\)