K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 8 2020

\(y'=f\left(x\right)=-x^2+2\left(m+1\right)x+m+3\)

Hàm đã cho đồng biến trên \(\left(0;3\right)\) khi và chỉ khi \(y'=0\) có 2 nghiệm pb thỏa mãn \(x_1\le0< 3\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\ge0\\f\left(3\right)\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m+3\ge0\\7m\ge0\end{matrix}\right.\) \(\Rightarrow m\ge0\)

12 tháng 6 2017

câu này bấm máy cho nhanh bạn ơi, giải kia k chắc lỡ sai uổn lắm..

NV
8 tháng 8 2020

1.

\(y'=6x^2+3m\)

Để hàm nghịch biến trên \(\left(1;2\right)\Leftrightarrow y'=0\) có 2 nghiệm pb thỏa mãn \(x_1\le1< 2\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\sqrt{\frac{-m}{2}}\le2\end{matrix}\right.\) \(\Leftrightarrow-4\le m< 0\)

2.

Bạn coi lại đề, biểu thức y không hợp lý

28 tháng 7 2019
https://i.imgur.com/6aR3ny6.jpg
28 tháng 7 2019

bài 1 bạn dò lại xem. Còn bài 2 tương tự

Phiếu ôn số 01 - 2019- Sự nghịch biến đồng biến Câu 1 : Hàm số y = 2x3-3x2+1 nghịch biến trên : A . (0;+∞) B. (0;1) C. (-∞;1) D. (-∞;0) ; (1;+∞) Câu 2: Hàm số y = x4-2x3+2x+1 đòng biến trên : A. (-\(\dfrac{1}{2}\);+∞) B. (-∞;\(\dfrac{-1}{2}\)) C. (0;+∞) D. (-1;\(\dfrac{-1}{2}\)) Câu 3: Hàm số y =...
Đọc tiếp

Phiếu ôn số 01 - 2019- Sự nghịch biến đồng biến

Câu 1 : Hàm số y = 2x3-3x2+1 nghịch biến trên :

A . (0;+∞) B. (0;1) C. (-∞;1) D. (-∞;0) ; (1;+∞)

Câu 2: Hàm số y = x4-2x3+2x+1 đòng biến trên :

A. (-\(\dfrac{1}{2}\);+∞) B. (-∞;\(\dfrac{-1}{2}\)) C. (0;+∞) D. (-1;\(\dfrac{-1}{2}\))

Câu 3: Hàm số y = \(\dfrac{x+1}{x-1}\) luôn nghịch biến trên :

A. R B. R\{1} C. (0;+∞) D. (-∞;1);(1;+∞)

Câu 4. Hàm số nào sau đâu nghịch biến trên (1;3) :

A. y = x2-4x+8 B.y =\(\dfrac{x^2+x-1}{x-1}\) C.y =\(\dfrac{2}{3}x^3-4x^2+6x-1\) D. y =\(\dfrac{2x-4}{x-1}\)

Câu 5. Hàm số nào sau đây luôn đồng biến trên R :

A. y = x3+2016 B. y = tanx C. y= x4+x2+1 D. y =\(\dfrac{2x+1}{x+3}\)

Câu 6. Trong các hàm số sau hàm số nào đồng biến trên miền xác định của nó :

A. y = \(\sqrt[3]{x+1}\) B.y = \(\dfrac{\sqrt{x^2+1}}{x^2}\) C. y = \(\dfrac{2x+1}{x+1}\) D. y = sinx

Câu 7. Hà, số y=|x-1|(x2-2x-2) có bao nhiêu khoảng đồng biến :

A.1 B.2 C.3 D.4

Câu 8. Hàm số y = \(\sqrt{2x-x^2}\) nghịch biến trên khoảng nào ?

A. (1;2) B. (1;+∞) C. ( 0;1) D. (0;2)

Câu 9 . Trong các hàm số sau , hàm số nào nghịch biến trên khoảng (0;2) :

A. y = \(\dfrac{x+3}{x-1}\) B. y = x4+2x2+3 C. y= x3-x2+3x-5 D. y= x3-3x2-5

1
7 tháng 8 2018

câu 1 B

câu 2 B

câu 3 D

câu 4 C

câu 5 C

câu 8 A

câu 9 D

NV
30 tháng 1 2019

\(y'=x^2-2xm+4m-3\)

Để hàm số đồng biến trên R \(\Rightarrow y'\ge0\) \(\forall x\in R\)

\(\Rightarrow x^2-2mx+4m-3\ge0\) \(\forall x\in R\)

\(\Rightarrow\Delta'=m^2-4m+3\le0\Rightarrow1\le m\le3\)

\(\Rightarrow GTLN\) của m để hs đồng biến trên R là \(m=3\)

AH
Akai Haruma
Giáo viên
5 tháng 7 2017

Lời giải:

a)

Hàm $y$ đồng biến trên khoảng xác định khi mà

\(y'=3x^2-6(2m+1)x+12m+5\geq 0\)

\(\Leftrightarrow \Delta'=9(2m+1)^2-3(12m+5)\leq 0\)

\(\Leftrightarrow -\sqrt{\frac{1}{6}}\leq m\leq \sqrt{\frac{1}{6}}\)

b) Hàm $y$ đồng biến trên TXĐ khi:

\(y'=3mx^2-2(2m-1)x+m-2\geq 0\) với mọi \(x\in\mathbb{R}\)

Để đảm bảo điều trên xảy ra với mọi $x$ thì \(m>0\)

Khi đó \(\Delta'=(2m-1)^2-3m(m-2)\leq 0\)

\(\Leftrightarrow (m+1)^2\leq 0\) (vô lý)

Do đó không tồn tại $m$ thỏa mãn