Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Câu đầu tiên:
Ta biết 2 phương trình tương đương là 2 phương trình có cùng tập nghiệm.
Xét PT $x^2-4x+5=0$
$\Leftrightarrow (x-2)^2=-1$ (vô lý)
Do đó $x^2-4x+5=0$ vô nghiệm.
Để 2 PT tương đương thì $x^2+2x+m=0$ cũng vô nghiệm
Điều này xảy ra khi $\Delta'=1-m< 0\Leftrightarrow m< 1$
Vậy..........
Các câu còn lại bạn làm tương tự.
Vì 1 < x1 < x2 nên pt đã cho có 2 nghiệm dương phân biệt
Tức là \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(2m-3\right)^2-4m^2+12m>0\\2m-3>0\\m^2-3m>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4m^2-12m+9-4m^2+12m>0\\m>\frac{3}{2}\\x< 0\left(h\right)x>3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}9>0\left(LuonĐúng\right)\\x>3\end{cases}}\)
\(\Leftrightarrow x>3\)
Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2m-3\\x_1x_2=m^2-3m\end{cases}}\)
Vì \(1< x_1< x_2\Rightarrow\hept{\begin{cases}x_1-1>0\\x_2-1>0\end{cases}}\)
\(\Rightarrow\left(x_1-1\right)\left(x_2-1\right)>0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1>0\)
\(\Leftrightarrow m^2-3m-2m+3+1>0\)
\(\Leftrightarrow m^2-5m+4>0\)
\(\Leftrightarrow\orbr{\begin{cases}m< 1\\m>4\end{cases}}\)
Mà m > 3 nên m > 4
Vậy m > 4
Lời giải:
PT có \(\Delta'=1+3m^2>0, \forall m\in\mathbb{R}\) nên luôn có hai nghiệm phân biệt với mọi $m$ thực.
Áp dụng định lý Viete cho phương trình bậc 2 ta có:
\(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=-3m^2\end{matrix}\right.\)
Để PT có hai nghiệm khác $0$ thì chỉ cần \(x_1x_2\neq 0\Leftrightarrow -3m^2\neq 0\Leftrightarrow m\neq 0\)
Biến đổi:
\(\frac{x_1}{x_2}-\frac{x_2}{x_1}=\frac{8}{3}\)
\(\Leftrightarrow \frac{x_1^2-x_2^2}{x_1x_2}=\frac{8}{3}\)\(\Leftrightarrow \frac{(x_1-x_2)(x_1+x_2)}{x_1x_2}=\frac{8}{3}\)
\(\Leftrightarrow \frac{2(x_1-x_2)}{-3m^2}=\frac{8}{3}\Rightarrow x_1-x_2=-4m^2\Rightarrow (x_1-x_2)^2=16m^4\)
\(\Leftrightarrow (x_1+x_2)^2-4x_1x_2=16m^4\)
\(\Leftrightarrow 4+12m^2=16m^4\)
\(\Leftrightarrow 4m^4-3m^2-1=0\Leftrightarrow (m^2-1)(4m^2+1)=0\)
Hiển nhiên \(4m^2+1> 0,\forall m\) nên \(m^2-1=0\Leftrightarrow m=\pm 1\) (thỏa mãn)
đk bài toán \(\Leftrightarrow\left\{{}\begin{matrix}x_1;x_2\ne0\\\dfrac{x_1}{x_2}-\dfrac{x_2}{x_1}=\dfrac{8}{3}\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)
(1) \(\Leftrightarrow\left\{{}\begin{matrix}\Delta'\ge0\\f\left(0\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1+3m^2\ge0\\-3m^2\ne0\end{matrix}\right.\) \(\Rightarrow m\ne0\)
hằng đẳng thức có \(\Leftrightarrow\dfrac{x_1^2-x_2^2}{x_1.x_2}=\dfrac{\left(x_1-x_2\right)\left(x_1+x_2\right)}{x_1x_2}\)
công thức nghiệm có \(x_{1,2}=1\pm\sqrt{1+3m^2}\)
vi et có \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1.x_2=-3m^2\end{matrix}\right.\)
(2) \(\Leftrightarrow\dfrac{2.\left(x_1-x_2\right)}{-3m^2}=\dfrac{8}{3}\) (3)
có -3m^2 <0 mọi m khác 0 =>\(x_1-x_2< 0\) \(\Rightarrow\left\{{}\begin{matrix}x_1=1-\sqrt{1+3m^2}\\x_2=1+\sqrt{1+3m^2}\end{matrix}\right.\)
(3) \(\Leftrightarrow\dfrac{2\left[-2\sqrt{1+3m^2}\right]}{-3m^2}=\dfrac{8}{3}\)
\(\Leftrightarrow\sqrt{3m^2+1}=2m^2\) \(\Leftrightarrow4m^4-3m^2-1=0\)
đặt m^2= t; => t >0
\(\Leftrightarrow4t^2-3t-1=0\left\{a+b+c=0\right\}\)
\(\left[{}\begin{matrix}t_1=1\\t_2=-\dfrac{1}{4}\left(l\right)\end{matrix}\right.\)
kết luận m =+-1
Gọi x0 là nghiệm chung của hai phương trình
thì x0 phải thỏa mãn hai phương trình trên.
Thay x = x0 vào hai phương trình trên ta được
x 0 2 + m x 0 + 2 = 0 x 0 2 + 2 x 0 + m = 0
⇒ (m – 2)x0 + 2 – m = 0 ⇔ (m – 2)(x0 – 1) = 0
Nếu m = 2 thì 0 = 0 (luôn đúng) hay hai phương trình trùng nhau.
Lúc này phương trình x2 + 2x + 2 = 0 ⇔ (x + 1)2 = −1
vô nghiệm nên cả hai phương trình đều vô nghiệm
Vậy m = 2 không thỏa mãn.
Nếu m ≠ 2 thì x0 = 1
Thay x0 = 1 vào phương trình x02 + mx0 + 2 = 0
ta được 1 + m + 2 = 0 ⇔ m = −3
Vậy m = −3 thì hai phương trình có nghiệm chung
Đáp án cần chọn là: B