K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
24 tháng 3 2020
\(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\mx-y=m^2-2\left(2\right)\end{cases}}\)
\(\left(2\right)\Rightarrow y=-m^2+2+mx\)
Thay (1) => \(\left(m+1\right)x+m\left(-m^2+2+mx\right)=2m-1\)
\(\Leftrightarrow\left(m^2+m+1\right)x-m^3+1=0\)
\(\Leftrightarrow x=\frac{m^3-1}{m^2+m+1}=m-1\)
\(\Rightarrow y=-m^2+2+m\left(m-1\right)=-m^2+2+m^2-m=2-m\)
Ta có: (m-1)(2-m)=-m2+3m-2=\(-\left(m-\frac{3}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Dấu "=" <=> \(m=\frac{3}{2}\)
Vậy \(m=\frac{3}{2}\)hpt có nghiệm duy nhất
\(\hept{\begin{cases}3x-2y=-1\\x+y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}3x-2y=-1\\2x+2y=6\end{cases}}\Leftrightarrow\hept{\begin{cases}3x-2y+2x+2y=-1+6\\2x+2y=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5x=5\\x+y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Từ phương trình 1 và 2 ta giả đc x=1 và y=2
Hệ có nghiệm duy nhất thì x=1 và y=2 thay vào phương trình 3 sẽ thỏa mãn
NHầm đề phải ko? thiếu y
2m.x-(4-m)y=m+1
2m. 1-(4-m)2=m+1
3m=9
m=3
Thử lại thỏa mãn