K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2018

f(x) + g(x) = 2x4 + 2x2

f(x) - g(x) = x4 - x2 + 2x

suy ra : f(x) = [ ( 2x4 + 2x2 ) + (  x4 - x2 + 2x ) ] : 2 =  \(\frac{3x^4+x^2+2x}{2}\)

g(x) =  [ ( 2x4 + 2x2 ) - (  x4 - x2 + 2x ) ] : 2 = \(\frac{x^4+3x^2-2x}{2}\)

24 tháng 8 2019

Ta có:\(f\left(x\right)-h\left(x\right)=g\left(x\right)\Leftrightarrow h\left(x\right)=f\left(x\right)-g\left(x\right)\)

\(\Leftrightarrow h\left(x\right)=\left(2x^4+5x^3-x+8\right)-\left(x^4-x^2+3x+9\right)\)

                  \(=2x^4+5x^3-x+8-x^4-x^2-3x-9\)

                  \(=x^4+5x^3+x^2-4x-1.\)

Vậy, đa thức cần tìm là: \(h\left(x\right)=x^4+5x^3+x^2-4x-1.\)

Ta có:  \(h\left(x\right)-g\left(x\right)=f\left(x\right)\Leftrightarrow h\left(x\right)=f\left(x\right)+g\left(x\right)\)

\(\Leftrightarrow h\left(x\right)=\left(2x^4+5x^3-x+8\right)+\left(x^4-x^2+3x+9\right)\)

                  \(=2x^4+5x^3-x+8+x^4-x^2+3x+9\)

                  \(=3x^4+5x^3-x^2+2x+17\)

Vậy, đa thức cần tìm là:\(h\left(x\right)=3x^4+5x^3-x^2+2x+17.\)

a)+)\(f\left(x\right)=3x^4-5x^3-x^2+1007\)

\(\Rightarrow f\left(x\right)=\left(3x^2-5x-1\right)x^2+1007\)

+)\(g\left(x\right)=2x^4+3x^3-1007\)

\(\Rightarrow g\left(x\right)=\left(2x^2+3x\right)x^2-1007\)

\(\Rightarrow f\left(x\right)-g\left(x\right)-2014=\left[\left(3x^2-5x-1\right)x^2+1007\right]-\left[\left(2x^2+3x\right)x^2-1007\right]-2014\)

\(f\left(x\right)-g\left(x\right)-2014=\left(3x^2-5x-1\right)x^2+1007-\left(2x^2+3x\right)x^2+1007-2014\)

\(f\left(x\right)-g\left(x\right)-2014=\left[\left(3x^2-5x-1\right)-\left(2x^2+3x\right)\right]x^2+\left(1007+1007-2014\right)\)

\(f\left(x\right)-g\left(x\right)-2014=3x^2-5x-1-2x^2-3x\)

\(\Rightarrow f\left(x\right)-g\left(x\right)-2014=x^2-2x-1=\left(x-1\right)^2\)

b)\(2014+g\left(x\right)-h\left(x\right)=f\left(x\right)\)

\(\Rightarrow-h\left(x\right)=f\left(x\right)-g\left(x\right)-2014\)

\(\Rightarrow-h\left(x\right)=\left(x-1\right)^2\)

\(\Rightarrow h\left(x\right)=-\left[\left(x-1\right)^2\right]\)

Chúc bạn học tốt

11 tháng 4 2017

Xét [\(f\left(x\right)+g\left(x\right)\)]+[\(f\left(x\right)-g\left(x\right)\)]=\(\left[2x^4+5x^2-3x\right]\)+\(\left[x^4-x^2+2x\right]\)

\(2f\left(x\right)=2x^4+5x^2-3x+x^4-x^2+2x\)

\(2f\left(x\right)=3x^4+4x^2-x\)

\(\Rightarrow f\left(x\right)=\dfrac{3x^4+4x^2-x}{2}\)

\(\Rightarrow f\left(x\right)=\dfrac{3}{2}x^4+2x^2-\dfrac{1}{2}x\)

Xét \(\left[f\left(x\right)+g\left(x\right)\right]-\left[f\left(x\right)-g\left(x\right)\right]=\)\(\left[2x^4+5x^2-3x\right]\)\(-\)\(\left[x^4-x^2+2x\right]\)

\(2g\left(x\right)=\)\(2x^4+5x^2-3x-x^4+x^2-2x\)

\(2g\left(x\right)=x^4+6x^2-5x\)

\(\Rightarrow g\left(x\right)=\dfrac{x^4+6x^2-5x}{2}\)

\(\Rightarrow g\left(x\right)=\dfrac{1}{2}x^4+3x^2-\dfrac{5}{2}x\)

9 tháng 1 2020

\(P\left(x\right)+Q\left(x\right)=f\left(x\right)-g\left(x\right)\)

\(f\left(x\right)-g\left(x\right)=3x^4+3x^3-5x^2+x-5-x^4-3x^3+3x^2-5x+7\)

\(=2x^4-2x^2-4x+2\)

\(\Rightarrow P\left(x\right)+Q\left(x\right)=2x^4-2x^2-4x+2\left(1\right)\)

\(P\left(x\right)-Q\left(x\right)=g\left(x\right)+h\left(x\right)\)

\(g\left(x\right)+h\left(x\right)=x^4+3x^3-3x^2+5x-7+5x^4+2x^3+x^2-5\)

\(=6x^4+5x^3-2x^2+5x-12\)

\(\Rightarrow P\left(x\right)-Q\left(x\right)=6x^4+5x^3-2x^2+5x-12\left(2\right)\)

Từ ( 1 );( 2 ) thì tìm dc P(x) và Q(x)

18 tháng 4 2018

h(x) + g(x) = f(x)

=> h(x)= f(x) - g(x) = \(3x^4+2x^2-2x^4+x^2-5x-\left(x^4-x^2-2x+6+3x^2\right)=x^2-3x-6\)\(h\left(-\dfrac{1}{3}\right)=\left(-\dfrac{1}{3}\right)^2-3\left(-\dfrac{1}{3}\right)-6=\dfrac{-44}{9}\)

\(h\left(\dfrac{3}{2}\right)=\left(\dfrac{3}{2}\right)^2-3\cdot\dfrac{3}{2}-6=-\dfrac{33}{4}\)

\(x^2-3x-6=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{33}}{6}\\x=\dfrac{3-\sqrt{33}}{6}\end{matrix}\right.\)