Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )x2+2y2-2xy+2x-4y+2=0
<=>x2-2x(y-1)+y2-2y+1+y2-2y+1=0
<=>x2-2x(y-1)+(y-1)2+(y-1)2=0
<=>(x-y+1)2+(y-1)2=0
<=>x-y+1=0 va y-1=0
<=>x=y-1 y=1
<=>x=1-1=0 y=1
a) \(\frac{6xy+4y}{4x^2y^2}+\frac{2xy-4y}{4x^2y^2}\)
\(=\frac{6xy+4y+2xy-4y}{4x^2y^2}\)
\(=\frac{8xy}{4x^2y^2}\)
\(=\frac{2}{xy}\)
b) \(\frac{5}{x+3}-\frac{3}{x-3}+\frac{30}{x^2-9}\)
\(=\frac{5\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\frac{3\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{30}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{5x-15-3x-9+30}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{2x+6}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{2}{x-3}\)
c) \(\frac{2x+8}{\left(x+2\right)^2}:\frac{x+4}{x+2}\)
\(=\frac{2\left(x+4\right)}{\left(x+2\right)^2}\cdot\frac{x+2}{x+4}\)
\(=\frac{2\left(x+4\right)\left(x+2\right)}{\left(x+2\right)\left(x+2\right)\left(x+4\right)}\)
\(=\frac{2}{x+2}\)
\(x^3+8y^3+2xy^2+x^2y\)
\(=x^3+2x^2y-x^2y-2xy^2+4xy^2+8y^3\)
\(=x^2\left(x+2y\right)-xy\left(x+2y\right)+4y^2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x^2-xy+4y^2\right)\)
TA có :
\(H=x^2+2xy+y^2-2x-2y=\left(x^2+y^2+1+2xy-2x-2y\right)-1=\left(x+y-1\right)^2-1\)
Vì \(\left(x+y-1\right)^2\ge0\) nên \(\left(x+y-1\right)^2-1\ge-1\)
Vậy GTNN của H là -1 khi x+y-1=0 => x+y = 1
BẢO HÙNG HÓM HỈNH LỚP TAO LÀM CHO CÒN TAO CHO Ý H
H=\(X^2+2XY+Y^2-2X-2Y\)
H=\(\left(X+Y\right)^2-2\left(X+Y\right)\)
H=\(\left(X+Y\right)^2\)\(-2.\left(X+Y\right).1+1\))-1
H=\(\left(X+Y-1\right)^2-1\)
VẬY GTNN LÀ -1
a)\(x^2-4x+y^2-2y+10=\left(x^2-4x+4\right)+\left(y^2-2y+1\right)+5\)
\(=\left(x-2\right)^2+\left(y-1\right)^2+5\ge5\)
Dấu "=" xảy ra khi x=2;y=1
b) tương tự câu a
c)\(x^2+2y^2-6x-8y+2xy+5=x^2+2y^2+2x\left(y-3\right)-8y+5\)
\(=x^2+2x\left(y-3\right)+\left(y^2-6x+9\right)+\left(y^2-2x+1\right)-5\)
\(=x^2+2x\left(y-3\right)+\left(y-3\right)^2+\left(y-1\right)^2-5\)
\(=\left(x+y-3\right)^2+\left(y-1\right)^2-5\ge-5\)
Dấu "=" xảy ra khi x=2;y=1
2C=4x^2+2x-10=((2x)^2+4x\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\))-\(\dfrac{41}{4}\)
=\(\left(2x+\dfrac{1}{2}\right)^2\)-41/4\(\ge\dfrac{-41}{4}\)
=> C\(\ge\dfrac{-41}{8}\)
Vậy min C = \(\dfrac{-41}{8}\)khi x=\(\dfrac{-1}{4}\)
\(4A=4x^2+44y^2+24xy-8y+20=\left(2x\right)^2+2.2x.6y+\left(6y\right)^2+8y^2-8y+20=\left(2x+6y\right)^2+2\left(4y^2-4y+1\right)+18=\left(2x+6y\right)^2+2\left(2y-1\right)^2+18\ge18\)