Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(9x^2-6x+9=\left(3x\right)^2-2\cdot3x\cdot1+1+8=\left(3x-1\right)^2+8\)
vì \(\left(3x-1\right)^2\ge0\Leftrightarrow\left(3x-1\right)^2+8\ge8\)
Vậy MIN = 8
dấu = xảy ra \(\Leftrightarrow3x-1=0\Leftrightarrow x=\frac{1}{3}\)
b, \(x^2+x+1=x^2+2\cdot\frac{1}{2}\cdot x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
vậy MIN = \(\frac{3}{4}\)dấu = xảy ra \(\Leftrightarrow x=\frac{-1}{2}\)
a) \(=\left(x^2+3x+1\right)^2-2\left(x^2+3x+1\right)\left(3x-1\right)+\left(3x-1\right)^2\)
\(=\left(x^2+3x+1-3x+1\right)^2\)
\(=\left(x^2+2\right)^2\)
b) \(=\left[\left(3x^3+1\right)^2-\left(3x\right)^2\right]-\left(3x^2+1\right)^2\)
\(=-\left(3x\right)^2=9x^2\)
c)\(=\left[\left(2x^2+1\right)^2-\left(2x\right)^2\right]-\left(2x^2+1\right)^2\)
\(=-\left(2x\right)^2=4x^2\)
a) \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)-3=-3\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3-3=-3\)
\(\Leftrightarrow14x=0\)
\(\Leftrightarrow x=0\)
Vậy pt có nghiệm duy nhất x = 0.
b) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=\left(x+2\right)-\left(x-5\right)\)
\(\Leftrightarrow6x^2+19x-7-6x^2-x+5=7\)
\(\Leftrightarrow18x-2=7\)
\(\Leftrightarrow18x=9\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy pt có nghiệm duy nhất \(x=\frac{1}{2}\)
c) \(\left(6x-2\right)^2+\left(5x-2\right)^2-4\left(3x-1\right)\left(5x-2\right)=0\)
\(\Leftrightarrow36x^2-24x+4+25x^2-20x+4-60x^2+33x-8=0\)
\(\Leftrightarrow x^2-11x=0\)
\(\Leftrightarrow x\left(x-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=11\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{0;11\right\}\)
d) \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)
\(\Leftrightarrow x^2-6x+9-x^2-4x+32=1\)
\(\Leftrightarrow41-10x=1\)
\(\Leftrightarrow-10x=40\)
\(\Leftrightarrow x=-4\)
Vậy pt có nghiệm duy nhất x = -4.
e) \(3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x+3\right)\left(x-3\right)=36\)
\(\Leftrightarrow3\left(x^2+4x+4\right)+4x^2-4x+1-7x^2+36=36\)
\(\Leftrightarrow3x^2+12x+12+4x^2-4x+1-7x^2=0\)
\(\Leftrightarrow8x=-13\)
\(\Leftrightarrow x=-\frac{13}{8}\)
Vậy pt có nghiệm duy nhất \(x=-\frac{13}{8}\)
a)\(\frac{6x^3-7x^2-x+2}{2x+1}=\frac{\left(2x+1\right)\left(3x^2-5x+2\right)}{2x+1}=3x^2-5x+2\)
b)\(\frac{6x^3-2x^2-9x+5}{x-1}=\frac{\left(x-1\right)\left(6x^2+4x-5\right)}{x-1}=6x^2+4x-5\)
a. x.(x+3)-x2+15=0
=> x^2 + 3x - x^2 + 15 = 0
=> 3x + 15 = 0
=> 3x = -15
=> x = -5
vậy_
b. (2x-1)(x+3) - x(2x-6) =15
=> 2x^2 + 6x - x - 3 - 2x^2 + 6x = 15
=> x - 3 = 15
=> x = 18
vậy_
c. x3 -36x = 0
=> x(x^2 - 36) = 0
=> x = 0 hoặc x^2 - 36 = 0
=> x = 0 hoặc x^2 = 36
=> x = 0 hoặc x = 6 hoặc x = -6
vậy_
d. 6x2 + 6x =x2+2x+1
=> 6x(x + 1) = (x + 1)^2
=> 6x(x + 1) - (x + 1)^2 = 0
=> (x + 1)(6x - x - 1) = 0
=> (x + 1)(5x - 1) = 0
=> x = -1 hoặc 5x = 1
=> x = -1 hoặc x = 1/5
vậy_
e. x(3x+1)=1-9x2
=> x(3x + 1) = (1 - 3x)(1 + 3x)
=> x(3x + 1) - (1 - 3x)(1 + 3x) = 0
=> (3x + 1)(x - 1 + 3x) = 0
=> (3x + 1)(4x - 1) = 0
=> 3x + 1 = 0 hoặc 4x - 1 = 0
=> 3x = -1 hoặc 4x = 1
=> x = -1/3 hoặc x = 1/4
vậy_
a) \(9x^2-6x+2\)
\(=9x^2-6x+1+1\)
\(=\left(3x-1\right)^2+1\)
Ta có: \(\left(3x-1\right)^2\ge0\forall x\Rightarrow\left(3x-1\right)^2+1\ge1\forall x\)
Dấu "=" xảy ra khi 3x - 1 = 0
hay 3x = 1 hay \(x=\dfrac{1}{3}\)
Vậy GTNN của biểu thức là 1 khi x = \(\dfrac{1}{3}\).
b) \(x^2+x+1\)
\(=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có: \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu "=" xảy ra khi \(x+\dfrac{1}{2}=0\) hay \(x=-\dfrac{1}{2}\)
Vậy GTNN của biểu thức là \(\dfrac{3}{4}\) khi x = \(-\dfrac{1}{2}\).
c) \(2x^2+2x+1\)
\(=2\left(x^2+x\right)+1\)
\(=2\left(x^2+x+\dfrac{1}{4}-\dfrac{1}{4}\right)+1\)
\(=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\)
Ta có: \(2\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\forall x\)
Dấu "=" xảy ra khi \(x+\dfrac{1}{2}=0\) hay \(x=-\dfrac{1}{2}\)
Vậy GTNN của biểu thức là \(\dfrac{1}{2}\) khi \(x=-\dfrac{1}{2}\).
d) \(x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu "=" xảy ra khi x - 1 = 0 hay x = 1
Vậy GTNN của biểu thức là 4 khi x = 1.
a) \(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1\ge1\forall x\)
\(\Rightarrow\) GTNN của biểu thức là 1 khi \(\left(3x-1\right)^2=0\Leftrightarrow3x-1=0\Leftrightarrow3x=1\Leftrightarrow x=\dfrac{1}{3}\)
vậy GTNN của biểu thức là 1 khi \(x=\dfrac{1}{3}\)
b) \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
\(\Rightarrow\) GTNN của biểu thức là \(\dfrac{3}{4}\) khi \(\left(x+\dfrac{1}{2}\right)^2=0\Leftrightarrow x+\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{-1}{2}\)
vậy GTNN của biểu thức là \(\dfrac{3}{4}\) khi \(x=\dfrac{-1}{2}\)
c) \(2x^2+2x+1=2\left(x^2+x+\dfrac{1}{2}\right)=2\left(x^2+x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)
\(=2\left(\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{4}\right)=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\forall x\)
\(\Rightarrow\) GTNN của biểu thức là \(\dfrac{1}{2}\) khi \(\left(x+\dfrac{1}{2}\right)^2=0\Leftrightarrow x+\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{-1}{2}\)
vậy GTNN của biểu thức là \(\dfrac{1}{2}\) khi \(x=\dfrac{-1}{2}\)
d) \(x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow\) GTNN của biểu thức là 4 khi \(\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
vậy GTNN của biểu thức là 4 khi \(x=1\)