Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
biểu thức B nhận giá trị b khi phương trình sau có nghiệm \(b=\frac{x+2y+1}{x^2+y^2+7}\)
\(\Leftrightarrow bx^2-x+by^2-2y+7y-1=0\left(2\right)\)
trong đó x là ẩn, y là tham số và b là tham số có điều kiện
nếu b=0 => x+2y+1=0
nếu b \(\ne\)0 để (2) có nghiệm x khi 1-4b(by2-2y+7b-1) >= 0 (3)
coi (3) là bất phương trình ẩn y. bất phương trình này xảy ra với mọi giá trị của y khi 16b2+4b2(-28b2+4b+1) >=0
<=> -28b2+4b+5 >=0 \(\Leftrightarrow-\frac{5}{14}\le b\le\frac{1}{2}\)
vậy minB=-5/14 khi \(x=-\frac{7}{5};y=-\frac{14}{5}\)
maxB=1/2 khi x=1;y=2
Ta có
\(A\left(x^2-5x+7\right)=x^2\)
\(\Leftrightarrow x^2\left(A-1\right)-5Ax+7A=0\)
Để pt này có nghiệm thì \(\Delta\ge0\)
\(\Leftrightarrow25A^2-4.7.\left(A-1\right)\ge0\)
\(\Leftrightarrow3A^2-28A\le0\)
\(\Leftrightarrow0\le A\le\frac{28}{3}\)
Vậy A đạt GTNN là 0 khi x = 0, đạt GTLN là \(\frac{28}{3}\)khi x = \(\frac{14}{5}\)
TXĐ:R
Đặt : \(A=\frac{x^2+1}{x^2-x+1}\)
<=> \(Ax^2-Ax+A-x^2-1=0\)
<=> \(\left(A-1\right)x^2-Ax+A-1=0\)
TH1: A =1 => x =0
TH2: A khác 1
phương trình có nghiệm <=> \(\Delta\ge0\) <=> \(A^2-4\left(A-1\right)^2\ge0\)
<=> \(-3A^2+8A-4\ge0\)
<=> \(\frac{2}{3}\le A\le2\)
A min =2/3 thay vào => x
A max =2 thay vào tìm x .
1. x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)
2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)
3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)
áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)
Mình đang bận nên chỉ nói hướng làm thôi nhá. GTNN thì bạn cộng trừ 1, còn GTLN thì bạn cộng trừ 6. Sau đó bạn sẽ tách ra được thành a+(2x^2+y^2)/x^2+y^2
2) ĐKXĐ: \(1\le x\le5\)
\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)
Xảy ra đẳng thức khi và chỉ khi x = 3
Miền giá trị nhé :D
\(y=\frac{x^2}{x^2-5x+7}\)
\(\Leftrightarrow yx^2-5xy+7y=x^2\)
\(\Leftrightarrow\left(y-1\right)x^2-5xy+7y=0\)
\(TH1:y-1=0\Rightarrow y=1\Rightarrow x=\frac{7}{5}\)
\(TH2:y-1\ne0\Rightarrow pt\) là phương trình bậc 2 ẩn x
\(\Delta_x=y^2-28\left(y-1\right)=y^2-28y+28\ge0\)
\(\Leftrightarrow\left(y-14\right)^2-168\ge0\Rightarrow\left(y-14\right)^2\ge168\)
\(\Rightarrow-\sqrt{168}\le\left|y-14\right|\le\sqrt{168}\)
Không biết có sai bước nào ko chứ số xấu -_-
\(C=\frac{x^2}{x^2-5x+7}\)
\(\Leftrightarrow Cx^2-5Cx+7C-x^2=0\)
\(\Leftrightarrow\left(C-1\right)x^2-5Cx+7C=0\)(1)
Để \(pt\left(1\right)\) có nghiệm \(\Leftrightarrow\Delta=\left(-5C\right)^2-4\left(C-1\right)7C\ge0\)
\(\Leftrightarrow25C^2-28C^2+28C\ge0\Leftrightarrow-3C^2+28C\ge0\Leftrightarrow0\le C\le\frac{28}{3}\)
Đạt GTNN là 0 khi x = 0
Đạt GTLN là \(\frac{28}{3}\) khi \(x=\frac{14}{5}\)
Mik có cách khác dễ hiểu hơn đó :v
Nhưng cám ơn bạn nhiều :))