\(C=\frac{x^2}{x^2-5x+7}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2017

\(C=\frac{x^2}{x^2-5x+7}\)

\(\Leftrightarrow Cx^2-5Cx+7C-x^2=0\)

\(\Leftrightarrow\left(C-1\right)x^2-5Cx+7C=0\)(1)

Để \(pt\left(1\right)\) có nghiệm \(\Leftrightarrow\Delta=\left(-5C\right)^2-4\left(C-1\right)7C\ge0\)

\(\Leftrightarrow25C^2-28C^2+28C\ge0\Leftrightarrow-3C^2+28C\ge0\Leftrightarrow0\le C\le\frac{28}{3}\)

Đạt GTNN là 0 khi x = 0

Đạt GTLN là \(\frac{28}{3}\) khi \(x=\frac{14}{5}\)

6 tháng 10 2017

Mik có cách khác dễ hiểu hơn đó :v

Nhưng cám ơn bạn nhiều :))

24 tháng 7 2020

biểu thức B nhận giá trị b khi phương trình sau có nghiệm \(b=\frac{x+2y+1}{x^2+y^2+7}\)

\(\Leftrightarrow bx^2-x+by^2-2y+7y-1=0\left(2\right)\)

trong đó x là ẩn, y là tham số và b là tham số có điều kiện

nếu b=0 => x+2y+1=0

nếu b \(\ne\)0 để (2) có nghiệm x khi 1-4b(by2-2y+7b-1) >= 0 (3)

coi (3) là bất phương trình ẩn y. bất phương trình này xảy ra với mọi giá trị của y khi 16b2+4b2(-28b2+4b+1) >=0

<=> -28b2+4b+5 >=0 \(\Leftrightarrow-\frac{5}{14}\le b\le\frac{1}{2}\)

vậy minB=-5/14 khi \(x=-\frac{7}{5};y=-\frac{14}{5}\)

maxB=1/2 khi x=1;y=2

3 tháng 11 2016

Ta có 

\(A\left(x^2-5x+7\right)=x^2\)

\(\Leftrightarrow x^2\left(A-1\right)-5Ax+7A=0\)

Để pt này có nghiệm thì \(\Delta\ge0\)

\(\Leftrightarrow25A^2-4.7.\left(A-1\right)\ge0\)

\(\Leftrightarrow3A^2-28A\le0\)

\(\Leftrightarrow0\le A\le\frac{28}{3}\)

Vậy A đạt GTNN là 0 khi x = 0, đạt GTLN là \(\frac{28}{3}\)khi x = \(\frac{14}{5}\)

16 tháng 10 2019

TXĐ:R

Đặt : \(A=\frac{x^2+1}{x^2-x+1}\)

<=> \(Ax^2-Ax+A-x^2-1=0\)

<=> \(\left(A-1\right)x^2-Ax+A-1=0\)

TH1: A =1 => x =0

TH2: A khác 1

phương trình có nghiệm <=> \(\Delta\ge0\) <=> \(A^2-4\left(A-1\right)^2\ge0\)

<=> \(-3A^2+8A-4\ge0\)
<=> \(\frac{2}{3}\le A\le2\)

A min =2/3 thay vào => x

A max =2 thay vào tìm x .

21 tháng 5 2015

1.  x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)

2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)

 

21 tháng 5 2015

3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)

áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)

24 tháng 11 2017

Mình đang bận nên chỉ nói hướng làm thôi nhá. GTNN thì bạn cộng trừ 1, còn GTLN thì bạn cộng trừ 6. Sau đó bạn sẽ tách ra được thành a+(2x^2+y^2)/x^2+y^2 

6 tháng 12 2015

2) ĐKXĐ:  \(1\le x\le5\)

\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)

Xảy ra đẳng thức khi và chỉ khi x = 3

24 tháng 3 2020

Miền giá trị nhé :D

\(y=\frac{x^2}{x^2-5x+7}\)

\(\Leftrightarrow yx^2-5xy+7y=x^2\)

\(\Leftrightarrow\left(y-1\right)x^2-5xy+7y=0\)

\(TH1:y-1=0\Rightarrow y=1\Rightarrow x=\frac{7}{5}\)

\(TH2:y-1\ne0\Rightarrow pt\) là phương trình bậc 2 ẩn x

\(\Delta_x=y^2-28\left(y-1\right)=y^2-28y+28\ge0\)

\(\Leftrightarrow\left(y-14\right)^2-168\ge0\Rightarrow\left(y-14\right)^2\ge168\)

\(\Rightarrow-\sqrt{168}\le\left|y-14\right|\le\sqrt{168}\)

Không biết có sai bước nào ko chứ số xấu -_-