K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2018

\(D=x^2+5y^2+2xy-2y+2005\)

\(D=\left(x^2+2xy+y^2\right)+\left(4y^2-2y+\frac{1}{4}\right)+2004,75\)

\(D=\left(x+y\right)^2+\left(2y+\frac{1}{2}\right)^2+2004,75\)

Mà  \(\left(x+y\right)^2\ge0\forall x;y\)

      \(\left(2y+\frac{1}{2}\right)^2\ge0\forall y\)

\(\Rightarrow D\ge2004,75\)

Dấu "=" xảy ra khi : 

\(\hept{\begin{cases}x+y=0\\2y+\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{1}{4}\end{cases}}\)

Vậy  \(D_{Min}=2004,75\Leftrightarrow\left(x;y\right)=\left(\frac{1}{4};-\frac{1}{4}\right)\)

21 tháng 6 2019

\(x^2+5y^2+2xy-2y+2005=x^2+y^2+4y^2+2xy-2y+\frac{1}{4}+\frac{8019}{4}\)

\(=\left(x^2+2xy+y^2\right)+\left(4y^2-2y+\frac{1}{4}\right)+\frac{8019}{4}\)

\(=\left(x+y\right)^2+\left(2y-\frac{1}{2}\right)^2+\frac{8019}{4}\)

Vì \(\left(x+y\right)^2\ge0\)

    \(\left(2y-\frac{1}{2}\right)^2\ge0\)

\(\Rightarrow\left(x+y\right)^2+\left(2y-\frac{1}{2}\right)^2+\frac{8019}{4}\ge\frac{8019}{4}\)

Vậy \(GTNN=\frac{8019}{4}\)tại \(x=-\frac{1}{4}\)và \(y=\frac{1}{4}\)

20 tháng 6 2018

Đặt A=x2+5y2-2xy+y+2005

=(x2-2xy+y2)+(4y2+y+1/16)+32079/16

=(x-y)2+(2y+1/4)2+32079/16

Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(2y+\frac{1}{4}\right)^2\ge0\end{cases}\Rightarrow\left(x-y\right)^2+\left(2y+\frac{1}{4}\right)^2\ge0}\)

\(\Rightarrow A=\left(x-y\right)^2+\left(2y+\frac{1}{4}\right)^2+\frac{32079}{16}\ge\frac{32079}{16}\)

Dấu "=" xảy ra khi x = y = -1/8

Vậy Amin = 32079/16 khi x=y=-1/8

11 tháng 8 2020

\(M=x^2-8x+5\)

\(\Leftrightarrow M=x^2-8x+16-11\)

\(\Leftrightarrow M=\left(x-4\right)^2-11\ge-11\)

Min M = -11 

\(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x=4\)

11 tháng 8 2020

\(N=-3x-6x-9\)

\(\Leftrightarrow N=-9x-9\le-9\)

Max N = -9

\(\Leftrightarrow x=0\)

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

13 tháng 9 2020

A = 2x2 + y2 - 2xy - 2y + 2000 = (x2 - 2xy + y2) + 2(x - y) + 1 + (x2 + 2x + 1) + 1998

= (x - y)2 + 2(x - y) + 1 + (x + 1)2 + 1998 = (x - y + 1)2 + (x + 1)2 1998 \(\ge\)1998 với mọi x,y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y+1=0\\x+1=0\end{cases}}\) <=> \(\hept{\begin{cases}y=x+1\\z=-1\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)

Vậy MinA = 1998 khi x = -1 và y = .0

b) B = x2 + 5y2 - 2xy + 6x - 18y + 50 = (x2 - 2xy + y2) + 6(x - y) + 9 + (4y2 - 12y + 9) + 32

= (x - y)2 + 6(x - y) + 9 + (2y - 3)2 + 32 = (x - y + 3)2 + (2y - 3)2 + 32 \(\ge\)32 với mọi x,y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y+3=0\\2y-3=0\end{cases}}\)<=> \(\hept{\begin{cases}x=y-3\\y=\frac{3}{2}\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{3}{2}\end{cases}}\)

Vậy MinB = 32 khi x = -3/2 và y = 3/2

c) C = 3x2 +  x + 4 = 3(x2 + 1/3x + 1/36) + 47/12 = 3(x + 1/6)2 + 47/12 > = 47/12 với mọi x

Dấu "=" xảy ra <=> x + 1/6 = 0 <=> x = -1/6

Vậy MinC = 47/12 khi x = -1/6

13 tháng 9 2020

A = 2y2 + x2 - 2xy - 2y + 2000 ( vầy mới tính được bạn nhé ;-; )

= ( x2 - 2xy + y2 ) + ( y2 - 2y + 1 ) + 1999

= ( x - y )2 + ( y - 1 )2 + 1999

\(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x,y\\\left(y-1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-y\right)^2+\left(y-1\right)^2+1999\ge1999\forall x,y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y=0\\y-1=0\end{cases}}\Leftrightarrow x=y=1\)

=> MinA = 1999 <=> x = y = 1

B = x2 + 5y2 - 2xy + 6x - 18y + 50

= ( x2 - 2xy + y2 + 2x - 6y + 9 ) + ( 4y2 - 12y + 9 ) + 32

= [ ( x2 - 2xy + y2 ) + 2( x - y ).3 + 32 ] + ( 2y - 3 )2 + 32

= [ ( x - y )2 + 2( x - y ).3 + 32 ] + ( 2y - 3 )2 + 32

= ( x - y + 3 ) + ( 2y - 3 )2 + 32

\(\hept{\begin{cases}\left(x-y+3\right)^2\ge0\forall x,y\\\left(2y-3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-y+3\right)^2+\left(2y-3\right)^2+32\ge32\forall x,y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y+3=0\\2y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{3}{2}\end{cases}}\)

=> MinB = 32 <=> x = -3/2 ; y = 3/2

C = 3x2 + x + 4

= 3( x2 + 1/3x + 1/36 ) + 47/12

= 3( x + 1/6 )2 + 47/12 ≥ 47/12 ∀ x

Đẳng thức xảy ra <=> x + 1/6 = 0 => x = -1/6

=> MinC = 47/12 <=> x = -1/6