Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\left|x-3\right|+\left|x-2\right|\)
A= \(\left|3-x\right|+\left|x-2\right|\ge\left|3-x+x-2\right|\)
A \(\ge\left|1\right|\)=1
vậy Amin=1 khi x=3 hoặc x=2
ta có Ix- 3I >= 0
Ix-5I >= 0
=> A >= 0
Đấu "=" đúng ở dạng ta có 2 th
TH1 x-3 = 0 => x = 3
=>Ix-5I = I3-5I = I-2I = 2
=> A = 0 + 2 =2
th2 x-5 = 0 => x = 5
=>Ix-3I = I5-3I = 2
=> A = 0+2 = 2
VẬY giá tri nhỏ nhất của A = 2
áp dụng tính chất : lx| = |-x|
|x|+|y|\(\ge\)|x+y|
ta được lx-1l+ lx-2l +lx-3l+ lx-4l \(\ge\)|x-1+2-x+x-3-x+4|=4
vậy giá trị nhỏ nhất là 4
dấu = xảy ra khi tất cả cùng dấu
cậu nên mua quyển sách mình nói nêu là dân chuyên toán
a, |x - 5| = x - 5 ( đk : x >= 5 )
<=> x - 5 = ( x - 5 )^2
<=> x - 5 = x^2 - 10x + 25
<=> x^2 - 10x + 25 - x + 5 = 0
<=> x^2 - 11x + 30 = 0
<=> x^2 - 5x - 6x + 30 = 0
<=> ( x^2 - 5x) - ( 6x - 30) = 0
<=> x ( x- 5) - 6( x- 5 ) = 0
<=> ( x- 5).(x - 6) =0
<=> Th1 : x- 5 = 0 => x = 5
Th2 : x - 6 = 0 => x = 6
khó kinh
a)Ta có :
\(\left|x-5\right|\ge0\)
\(\Rightarrow5-x\ge0\)
Mà 5 > 0
\(\Rightarrow x\ge0\)
Nên |x - 5| = 5 - x
=> x - 5 = 5 - x
=> x + x = 5 + 5
=> 2x = 10
=> x = 5
b) Ta có :
\(\left|x+3\right|\ge0\)
\(\left|x+2\right|\ge0\)
\(\Rightarrow\left|x+3\right|+\left|x+2\right|\ge0\)
\(\Rightarrow x\ge0\)
Nên |x + 3| + |x + 2| = x
=> x + 3 + x + 2 = x
=> 2x + 5 = x
=> 2x - x = -5
=> x = -5
/ x - 2 / = / 2x + 3 /
\(=>x-2=2x+3\)
\(=>-x=5\)
\(=>x=-5\)
Ta đã biết với mọi x,y thuộc Q thì \(\left|x+y\right|\le\left|x\right|+\left|y\right|\).
Đẳng thức xảy ra khi \(xy\ge0\)
Ta có : \(A=\left|x-3\right|+\left|x-2\right|=\left|x-3\right|+\left|2-x\right|\ge\left|x-3+2-x\right|=\left|-1\right|=1\)
Vậy \(A\ge1\), A đạt giá trị nhỏ nhất là 1 khi \(2\le x\le3\)
Phải không ta???
Ta có A=|x-3|+|x-2|
= |3-x|+|x-2|
\(\ge\)\(\left|3-x+x-2\right|\)=|1|=1
=> GTNN của A=1 \(\Leftrightarrow\left(3-x\right)\left(x-2\right)\ge0\)
\(\Leftrightarrow2\le x\le3\)
Vậy Min A=1 khi \(2\le x\le3\)