Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(12x^2-6x+4)/(x^2+1)= (3x^2+3+9x^2-6x+1)/(x^2+1)= 3(x^2+1)+(3x-1)^2/(x^2+1)=3+(3x-1)^2
Vì (3x-1)^2 >= 0 => để đạt GTNN thì (3x-1)^2=0. Vậy GTNN là 3 tại x=1/3 ( tự tìm nghiệm x)
P=(12x^2-6x+4)/(x^2+1)
=(9x^2-6x+1+3x^2+3)/(x^2+1)
=(9x^2-6x+1)/(x^2+1)+(3x^2+3)/(x^2+1)
=(3x-1)^2/(x^2+1)+3(x^2+1)/(x^2+1)
=(3x-1)^2/(x^2+1)+3 >= 3 với mọi x (do (3x-1)^2/(x^2+1) dương với mọi x)
Vậy minP=3,dấu "=" xảy ra <=> x=1/3
\(A=x^4+6x^3+13x^2+12x+12\)
\(=\left(x^4+6x^3+19x^2+30x+25\right)-6x^2-18x-30+17\)
\(=\left(x^4+6x^3+19x^2+30x+25\right)-6\left(x^2+3x+5\right)+17\)
\(=\left(x^2+3x+5\right)^2-6\left(x^2+3x+5\right)+17\)
Đặt \(t=x^2+3x+5\)
Khi đó \(A=t^2-6t+17=t^2-2.t.3+9+8=\left(t-3\right)^2+8\ge8\)
Dấu "=" xảy ra <=> t - 3 = 0 <=> t = 3
<=> \(x^2+3x+5=3\Leftrightarrow x^2+3x+2=0\)
\(\Leftrightarrow x^2+x+2x+2=0\)
\(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
Vậy AMin = 8 khi và chỉ khi x = -1 hoặc x = -2
a) MTC : \(\left(x+1\right)\left(x^2-x+1\right)\)
Quy đồng :
\(\frac{x-1}{x^3+1}=\frac{x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\frac{2x}{x^2-x+1}=\frac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\frac{2}{x+1}=\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
b ) MTC : \(10x\left(2y-x\right)\left(2y+x\right)\)
\(\frac{7}{5x}=\frac{7.2.\left(2y-x\right)\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=\frac{-4.10x.\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}=\frac{-40x\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)
c ) MTC : \(\left(x+2\right)^3\)
\(\frac{6x^2}{x^3+6x^2+12x+8}=\frac{6x^2}{\left(x+2\right)^3}\)
\(\frac{3x}{x^2+4x+4}=\frac{3x}{\left(x+2\right)^2}=\frac{3x\left(x+2\right)}{\left(x+2\right)^3}\)
\(\frac{2}{2x+4}=\frac{1}{x+2}=\frac{\left(x+2\right)^2}{\left(x+2\right)^3}\)
Đây mình trả lời với x là số thực.
1) x^2 - 6x + 10 = (x^2 - 6x + 9) + 1 = (x - 3)^2 + 1. >= 0 + 1 = 1. (Số chính phương luôn >= 0 với mọi x).
Vậy GTNN của biểu thức trên là 1. Dấu "=" xảy ra <=> x = 3.
2) x^2 - 8x + 19 = (x^2 - 8x + 16) + 3 = (x - 4)^2 + 3 >= 0 + 3 = 3.
Vậy GTNN của biểu thức trên là 1. Dấu "=" xảy ra <=> x = 4.
3) 3x^2 - 6x + 5 = (3x^2 - 6x + 3) + 2 = 3.(x - 1)^2 + 2 >= 0 + 2 = 2.
Vậy GTNN của biểu thức trên là 2. Dấu "=" xảy ra <=> x = 1.
4) x^2 + x + 1 = (x^2 + x + 1/4) + 3/4 = (x + 1/2)^2 + 3/4 >= 0 + 3/4 = 3/4.
Vậy GTNN của biểu thức trên là 3/4. Dấu "=" xảy ra <=> x = -1/2.
5) x^2 + 10x + 27 = (x^2 + 10x + 25) + 2 = (x + 5)^2 + 2 >= 0 + 2 = 2.
Vậy GTNN của biểu thức trên là 2. Dấu "=" xảy ra <=> x = -5.
6) 4x^2 + 4x + 2 = (4x^2 + 4x + 1) + 1 = (2x + 1)^2 + 1 >= 0 + 1 = 1.
Vậy GTNN của biểu thức trên là 1. Dấu "=" xảy ra <=> x = -1/2.
7) 16x^2 + 16x + 25 = (16x^2 + 16x + 4) + 21 = 4.(2x + 1)^2 + 21 >= 0 + 21 = 21.
Vậy GTNN của biểu thức trên là 21. Dấu "=" xảy ra <=> x = -1/2.
8) 9x^2 - 12x + 5 = (9x^2 - 12x + 4) + 1 = (3x - 2)^2 + 1 >= 0 + 1 = 1.
Vậy GTNN của biểu thức trên là 1. Dấu "=" xảy ra <=> x = 2/3.
9) 49x^2 - 28x + 7 = (49x^2 - 28x + 4) + 3 = (7x - 2)^2 + 3 >= 0 + 3 = 3.
Vậy GTNN của biểu thức là 3. Dấu "=" xảy ra <=> x = 2/7.
10) 30 - 6x + x^2 = (x^2 - 6x + 9) + 21 = (x - 3)^2 + 21 >= 0 + 21 = 21.
Vậy GTNN của biểu thức là 21. Dấu "=" xảy ra <=> x = 3.
11) (1/4).x^2 + x + 3 = ((1/4).x + x + 1) + 2 = ((1/2).x + 1)^2 + 2 >= 0 + 2 = 2.
Vậy GTNN của biểu thức là 2. Dấu "=" xảy ra <=> x = -2.
Lần sau nếu như đề bài yêu cầu tìm GTNN của 1 biểu thức thì bạn tìm xem biểu thức đó >= bao nhiêu nhé, và giá trị đó sẽ là GTNN của biểu thức đã cho. Còn nếu như đề bài yêu cầu tìm GTLN của 1 biểu thức thì bạn làm ngược lại.
Đề sai một chút nha bạn : mình sửa bạn thử tham khảo xem đúng không \(P=\frac{12x^2-6x+4}{\left(x-1\right)^2}\)
Mình làm luôn nha
Giải
Theo bài ra , ta có :
\(P=\frac{12x^2-6x+4}{\left(x-1\right)^2}=\frac{12\left(x^2-2x+1\right)+18x-8+10x-10+10}{\left(x-1\right)^2}=\frac{12\left(x-1\right)^2+18\left(x-1\right)+10}{\left(x-1\right)^2}=12+\frac{18}{x-1}+\frac{10}{\left(x-1\right)^2}\)
Đặt \(\frac{2}{x-1}=y\)
Đến đây bạn tự làm tiếp nhé
Đề đúng rồi đó bạn #Phát