Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(x^2+x\right)^2+4\left(x^2+x\right)+4-16=\left(x^2+x+2\right)^2-16\ge-16\)
Dấu \("="\Leftrightarrow x^2+x+2=0\Leftrightarrow x\in\varnothing\left(x^2+x+2>0\right)\)
Vậy dấu \("="\) ko xảy ra nên sẽ ko tính đc GTNN
a)
(x+4)(3x-5) = 0
=> x + 4 = 0 hoặc 3x-5 = 0
x = -4 x = 5/3
b)
2x2 + 7x + 3 = 0
2x2 + 6x + x + 3= 0
(2x+1)(x+3) = 0
=> 2x+1 = 0 hoặc x + 3 = 0
x = -1/2 x = -3
\(\frac{2x+3}{4}>\frac{4-x}{-3}\)
\(\frac{3\left(2x+3\right)}{12}>\frac{-4\left(4-x\right)}{12}\)
\(3\left(2x+3\right)>-4\left(4-x\right)\)
\(6x+9>-16+4x\)
\(6x+9-4x>-16\)
\(2x+9>-16\)
\(2x>-25\Leftrightarrow x>-\frac{25}{2}\)
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
Mình biết hơi muộn
\(A=x^2+2xy+6x+6y+2y^2+8\Leftrightarrow x^2+2xy+6x+6y+y^2+9-1\)
\(A=0\Rightarrow\left(x+y+3\right)^2+y^2-1=0\)
\(\Rightarrow-1\le x+y+3\le1\) .
\(\Rightarrow2012\le x+y+3+2013\le2014\)
\(\Rightarrow2012\le B\le2014\)
Lời giải:
a) Xét hiệu:
\(a^4+b^4-(a^3b+ab^3)\)
\(=(a^4-a^3b)-(ab^3-b^4)\)
\(=a^3(a-b)-b^3(a-b)=(a-b)(a^3-b^3)=(a-b)(a-b)(a^2+ab+b^2)\)
\(=(a-b)^2(a^2+ab+b^2)\)
Ta thấy: \((a-b)^2\geq 0, \forall a,b\in\mathbb{R}\)
\(a^2+ab+b^2=(a+\frac{b}{2})^2+\frac{3b^2}{4}\geq 0, \forall a,b\in\mathbb{R}\)
\(\Rightarrow a^4+b^4-(a^3b+ab^3)=(a-b)^2(a^2+ab+b^2)\geq 0, \forall a,b\in\mathbb{R}\)
\(\Rightarrow a^4+b^4\geq ab^3+a^3b\) với mọi $a,b\in\mathbb{R}$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b$
b)
\((x-3)(x-4)(x-5)(x-6)+3\)
\(=[(x-3)(x-6)][(x-4)(x-5)]+3\)
\(=(x^2-9x+18)(x^2-9x+20)+3\)
\(=a(a+2)+3\) (đặt \(x^2-9x+18=a)\)
\(=a^2+2a+3=(a+1)^2+2\geq 2>0, \forall a\in\mathbb{R}\)
hay \((x-3)(x-4)(x-5)(x-6)+3>0, \forall x\in\mathbb{R}\) (đpcm)
a) Xét hiệu:
a4+b4−(a3b+ab3)a4+b4−(a3b+ab3)
=(a4−a3b)−(ab3−b4)=(a4−a3b)−(ab3−b4)
=a3(a−b)−b3(a−b)=(a−b)(a3−b3)=(a−b)(a−b)(a2+ab+b2)=a3(a−b)−b3(a−b)=(a−b)(a3−b3)=(a−b)(a−b)(a2+ab+b2)
=(a−b)2(a2+ab+b2)=(a−b)2(a2+ab+b2)
Ta thấy: (a−b)2≥0,∀a,b∈R(a−b)2≥0,∀a,b∈R
a2+ab+b2=(a+b2)2+3b24≥0,∀a,b∈Ra2+ab+b2=(a+b2)2+3b24≥0,∀a,b∈R
⇒a4+b4−(a3b+ab3)=(a−b)2(a2+ab+b2)≥0,∀a,b∈R⇒a4+b4−(a3b+ab3)=(a−b)2(a2+ab+b2)≥0,∀a,b∈R
⇒a4+b4≥ab3+a3b⇒a4+b4≥ab3+a3b với mọi a,b∈Ra,b∈R
Ta có đpcm.
Dấu "=" xảy ra khi a=ba=b
b)
(x−3)(x−4)(x−5)(x−6)+3(x−3)(x−4)(x−5)(x−6)+3
=[(x−3)(x−6)][(x−4)(x−5)]+3=[(x−3)(x−6)][(x−4)(x−5)]+3
=(x2−9x+18)(x2−9x+20)+3=(x2−9x+18)(x2−9x+20)+3
=a(a+2)+3=a(a+2)+3 (đặt x2−9x+18=a)x2−9x+18=a)
=a2+2a+3=(a+1)2+2≥2>0,∀a∈R=a2+2a+3=(a+1)2+2≥2>0,∀a∈R
hay (x−3)(x−4)(x−5)(x−6)+3>0,∀x∈R(x−3)(x−4)(x−5)(x−6)+3>0,∀x∈R (đpcm)
a) Xét hiệu:
a4+b4−(a3b+ab3)a4+b4−(a3b+ab3)
=(a4−a3b)−(ab3−b4)=(a4−a3b)−(ab3−b4)
=a3(a−b)−b3(a−b)=(a−b)(a3−b3)=(a−b)(a−b)(a2+ab+b2)=a3(a−b)−b3(a−b)=(a−b)(a3−b3)=(a−b)(a−b)(a2+ab+b2)
=(a−b)2(a2+ab+b2)=(a−b)2(a2+ab+b2)
Ta thấy: (a−b)2≥0,∀a,b∈R(a−b)2≥0,∀a,b∈R
a2+ab+b2=(a+b2)2+3b24≥0,∀a,b∈Ra2+ab+b2=(a+b2)2+3b24≥0,∀a,b∈R
⇒a4+b4−(a3b+ab3)=(a−b)2(a2+ab+b2)≥0,∀a,b∈R⇒a4+b4−(a3b+ab3)=(a−b)2(a2+ab+b2)≥0,∀a,b∈R
⇒a4+b4≥ab3+a3b⇒a4+b4≥ab3+a3b với mọi a,b∈Ra,b∈R
Ta có đpcm.
Dấu "=" xảy ra khi a=ba=b
b)
(x−3)(x−4)(x−5)(x−6)+3(x−3)(x−4)(x−5)(x−6)+3
=[(x−3)(x−6)][(x−4)(x−5)]+3=[(x−3)(x−6)][(x−4)(x−5)]+3
=(x2−9x+18)(x2−9x+20)+3=(x2−9x+18)(x2−9x+20)+3
=a(a+2)+3=a(a+2)+3 (đặt x2−9x+18=a)x2−9x+18=a)
=a2+2a+3=(a+1)2+2≥2>0,∀a∈R=a2+2a+3=(a+1)2+2≥2>0,∀a∈R
hay (x−3)(x−4)(x−5)(x−6)+3>0,∀x∈R(x−3)(x−4)(x−5)(x−6)+3>0,∀x∈R (đpcm)v
a) x2 + 2x + 2
= ( x2 + 2x + 1 ) + 1
= ( x + 1 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
b) x2 - 6x + 10
= ( x2 - 6x + 9 ) + 1
= ( x - 3 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
c) \(x^2+x+\frac{1}{4}\)
\(=x^2+2\cdot\frac{1}{2}\cdot x+\left(\frac{1}{2}\right)^2\)
\(=\left(x+\frac{1}{2}\right)^2\ge0\forall x\)( Min là 0 nên chưa kết luận vội :)) )