K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 1 2021

Ý bạn $A=\frac{x^2-4x+1}{x^2}$ hay $A=x^2-4x+\frac{1}{x^2}$?

Bạn nên viết đề bằng công thức toán để được hỗ trợ tốt hơn!

10 tháng 6 2015

1. \(x^2-x+\frac{1}{4}-\frac{485}{4}=\left(x-\frac{1}{2}\right)^2-\frac{485}{4}=\left(x-\frac{1}{2}-\frac{\sqrt{485}}{2}\right)\left(x-\frac{1}{2}+\frac{\sqrt{485}}{2}\right)=\left(x-\frac{1+\sqrt{485}}{2}\right)\left(x+\frac{\sqrt{485}-1}{2}\right)\)

2) \(81x^2+4=4\left(\frac{81}{4}x^2+1\right)\)

3) \(A=x^2-4x+1=x^2-4x+4-3=\left(x-2\right)^2-3\ge-3\)=> Min A =-3 <=> x=2

. Nhớ L I K E

1.

\(a,x^2-x-121\)\(=\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{485}{4}\)\(=\left(x-\frac{1}{2}\right)^2-\frac{485}{4}\)\(=\left(x-\frac{1}{2}-\frac{\sqrt{485}}{2}\right)\left(x-\frac{1}{2}+\frac{\sqrt{485}}{2}\right)\)

\(b,81x^2+4\)\(=\left(9x^2\right)^2+2^2=\left[\left(9x^2\right)^2+36x^2+2^2\right]-36x^2\)

\(=\left(9x^2+2\right)^2-\left(6x\right)^2\)\(=\left(9x^2+2-6x\right)\left(9x^2+2+6x\right)\)

2.

\(A=x^2-4x+1=\left(x^2-2.x.2+4\right)-3\)\(=\left(x-2\right)^2-3\)

Vì \(\left(x-2\right)^2\ge0\)\(\Rightarrow\left(x-2\right)^2-3\ge-3\)

Dấu ''='' xảy ra khi x-2=0    => x=2

Vậy GTNN của A là A=-3 khi x=2

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

13 tháng 11 2016

(x^2-4x+1)/(x^2)
=(x^2-4x+4-3)/(x^2)
=(x-2)^2-3 /(x^2)
x^2 > 0 \Rightarrow biểu thức đạt gtnn khi (x-2)^2-3 có giá tri âm
(x-2)^2 > hoac = 0\Rightarrow gtnn của tử số là -3
khi đó: (x-2)^2=0\Rightarrow x-2=0\Rightarrow x=2
\Rightarrow mẫu số là 2^2=4
vậy gtnn của bt là -3/4
Có gì sai sót mọi người góp ý hộ nha!

13 tháng 11 2016

Ta có: \(A=\frac{x^2-4x+1}{x^2}\Leftrightarrow x^2\left(A-1\right)+4A-1=0\)

Để PT này có nghiệm thì: ∆' \(\ge0\)

\(\Leftrightarrow4+\left(A-1\right)\ge0\)

\(\Leftrightarrow A\ge-3\)

Đạt được khi x = 0,5

9 tháng 1 2018

\(A=\frac{x^2}{2}-\frac{x}{6}+3\)

\(2A=x^2-\frac{x}{3}+6=x^2-2.x\frac{1}{6}+\frac{1}{36}+\frac{35}{36}\)

\(2A=\left(x+\frac{1}{6}\right)^2+\frac{35}{36}\ge\frac{35}{36}\)

\(\Rightarrow A\ge\frac{35}{72}\)Dấu "=" xảy ra khi \(x=\frac{-1}{6}\)

b)\(B=x^4-4x^3+6x^2-4x+5\)

\(B=\left(x^4-4x^3+4x^2\right)+\left(2x^2-4x+2\right)+3\)

\(B=\left(x^2-2x\right)^2+2\left(x+1\right)^2+3\ge3\)

Dấu "=" xảy ra khi:\(x=0;-1;2\)